
1

Computer Graphics II: Rendering

CSE 168 [Spr 25], Lectures 18/19: Real-Time Rendering
Ravi Ramamoorthi

http://viscomp.ucsd.edu/classes/cse168/sp25

1

To Do

§ Final Projects due Jun 10

§ PLEASE FILL OUT SET EVALUATIONS!!

§ KEEP WORKING HARD

2

Motivation

§ Today, create photorealistic computer graphics
§ Complex geometry, lighting, materials, shadows
§ Computer-generated movies/special effects (difficult or

impossible to tell real from rendered…)

§ CSE 168 images from rendering competition (2011)

§ But algorithms were very slow (hours to days)

3

Real-Time Rendering

§ Goal: interactive rendering. Critical in many apps
§ Games, visualization, computer-aided design, …

§ Until 15-20 years ago, focus on complex geometry

§ Chasm between interactivity, realism

4

Evolution of 3D graphics rendering

Interactive 3D graphics pipeline as in OpenGL
§ Earliest SGI machines (Clark 82) to today
§ Most of focus on more geometry, texture mapping
§ Some tweaks for realism (shadow mapping, accum. buffer)

SGI Reality Engine 93
(Kurt Akeley)

5

Offline 3D Graphics Rendering

Ray tracing, radiosity, photon mapping
§ High realism (global illum, shadows, refraction, lighting,..)
§ But historically very slow techniques

“So, while you and your children’s children are waiting for ray tracing to take
over the world, what do you do in the meantime?” Real-Time Rendering

Pictures courtesy Henrik Wann Jensen

6

2

New Trend: Acquired Data

§ Image-Based Rendering: Real/precomputed images as input

§ Also, acquire geometry, lighting, materials from real world

§ Easy to obtain or precompute lots of high quality data. But
how do we represent and reuse this for (real-time) rendering?

7

20 years ago

§ High quality rendering: ray tracing, global illumination
§ Little change in CSE 168 syllabus, from 2003 to today

§ Real-Time rendering: Interactive 3D geometry with simple
texture mapping, fake shadows (OpenGL, DirectX)

§ Complex environment lighting, real materials (velvet, satin,
paints), soft shadows, caustics often omitted in both

§ Realism, interactivity at cross purposes

8

Today: Real-Time Game Renderings

Unreal Engine 4

Digital Ira: NVIDIA, USC

9

Today

§ Vast increase in CPU power, modern instrs (SSE, Multi-Core)
§ Real-time raytracing techniques are possible (even on

hardware: NVIDIA OptiX, RTX Raytracing)

§ 4th generation of graphics hardware is programmable
§ (First 3 gens were wireframe, shaded, textured)
§ Modern NVIDIA, ATI cards allow vertex, fragment shaders

§ Great deal of current work on acquiring and rendering with
realistic lighting, materials… [Especially at UCSD]

§ Focus on quality of rendering, not quantity of polygons, texture

10

Goals

§ Overview of basic techniques for high-quality
real-time rendering

§ Survey of important concepts and ideas, but do
not go into details of writing code

§ Some pointers to resources, others on web

§ One possibility for final project, will need to think
about some ideas on your own

11

Outline

§ Motivation and Demos

§ Programmable Graphics Pipeline

§ Shadow Maps

§ Environment Mapping

12

3

High quality real-time rendering
§ Photorealism, not just more polygons

§ Natural lighting, materials, shadows

 Interiors by architect Frank Gehry. Note rich lighting, ranging
from localized sources to reflections off vast sheets of glass.

13

High quality real-time rendering
§ Photorealism, not just more polygons

§ Natural lighting, materials, shadows

 Real materials diverse and not easy to represent by simple
parameteric models. Want to support measured reflectance.

Glass Vase
Glass Star (courtesy Intel) Peacock feather

14

High quality real-time rendering
§ Photorealism, not just more polygons

§ Natural lighting, materials, shadows

Natural lighting creates a mix of soft diffuse and hard shadows.

Agrawala et al. 00
small area light, sharp shadows soft and hard shadows

Ng et al. 03

15

Today: Full Global Illumination

16

Applications

§ Entertainment: Lighting design
§ Architectural visualization
§ Material design: Automobile industry
§ Realistic Video games
§ Electronic commerce

17

Programmable Graphics Hardware

18

4

Programmable Graphics Hardware

NVIDIA a new dawn demo (may need to type URL)
§ https://www.youtube.com/watch?v=bI1_quVr_3w

19

Precomputation-Based Methods

§ Static geometry

§ Precomputation

§ Real-Time Rendering (relight all-frequency effects)

§ Involves sophisticated representations, algorithms

20

Relit Images

Ng, Ramamoorthi, Hanrahan 04

21

Video: Real Time Relighting

22

Spherical Harmonic Lighting

Avatar 2010, based on Ramamoorthi and Hanrahan 01, Sloan 02

23

Interactive RayTracing
Advantages

§ Very complex scenes relatively easy (hierarchical bbox)
§ Complex materials and shading for free
§ Easy to add global illumination, specularities etc.

Disadvantages
§ Hard to access data in memory-coherent way
§ Many samples for complex lighting and materials
§ Global illumination possible but expensive

Modern developments: Leverage power of modern CPUs,
develop cache-aware, parallel implementations

Recent developments make real-time raytracing mainstream
(NVIDIA OptiX 5 in 2017, RTX chips in 2018, denoise, DLSS)

https://www.youtube.com/watch?v=kcP1NzB49zU

24

5

NVIDIA RTX Real-Time RayTracing

27

Impact: Real-Time
§ Extend AAF, FSF, MAAF: Predict Filter based on

Deep Learning (sample and AI-based denoising)

§ NVIDIA software (OptiX 2017), hardware (RTX 2018)

§ 40-year journey: ray tracing curiosity to every pixel

Whitted 79 (74 min 512x512) NVIDIA RTX 2018, OptIX: Pixar real-time previewer

28

From SIGGRAPH 18

Real Photo: Speaker and Turner Whitted at SIGGRAPH 18

29

Outline

§ Motivation and Demos

§ Programmable Graphics Pipeline

§ Shadow Maps

§ Environment Mapping

30

Basic Hardware Pipeline

Application Geometry Rasterizer

CPU GPU

Create geometry, lights,
materials, textures,
cubemaps, … as inputs

Transform and lighting calcs.
Apply per-vertex operations Textures, Cubemaps

Per-pixel (per-fragment)
operations

31

Geometry or Vertex Pipeline

Model, View
Transform Lighting Projection Clipping Screen

These fixed function stages can be replaced by a general per-vertex
calculation using vertex shaders in modern programmable hardware

32

6

Pixel or Fragment Pipeline

Rasterization
(scan conversion)

Texture
Mapping

Z-buffering Framebuffer

These fixed function stages can be replaced by a general per-fragment
calculation using fragment shaders in modern programmable hardware

33

OpenGL Rendering Pipeline

Geometry
Primitive
Operations

Pixel
Operations

Scan
Conversion
(Rasterize)

Texture
Memory

Fragment
Operations

Fram
ebuffer

Vertices

Images

Traditional Approach: Fixed function pipeline (state machine)
New Development (2003-): Programmable pipeline

Programmable in
Modern GPUs
(Vertex Shader)

Programmable in
Modern GPUs
(Fragment
 Shader)

34

Simplified OpenGL Pipeline
§ User specifies vertices (vertex buffer object)
§ For each vertex in parallel

§ OpenGL calls user-specified vertex shader:
Transform vertex (ModelView, Projection), other ops

§ For each primitive, OpenGL rasterizes
§ Generates a fragment for each pixel the fragment covers

§ For each fragment in parallel
§ OpenGL calls user-specified fragment shader:

Shading and lighting calculations
§ OpenGL handles z-buffer depth test unless overwritten

§ Modern OpenGL is “lite” basically just a rasterizer
§ “Real” action in user-defined vertex, fragment shaders

35

Shading Languages

§ Vertex / Fragment shading described by small program

§ Written in language similar to C but with restrictions

§ Long history. Cook’s paper on Shade Trees,
Renderman for offline rendering

§ Stanford Real-Time Shading Language, work at SGI

§ Cg from NVIDIA, HLSL
§ GLSL directly compatible with OpenGL 2.0 (So, you can

just read the OpenGL Red Book to get started)

36

Shader Setup

§ Initializing (shader itself discussed later)

1. Create shader (Vertex and Fragment)

2. Compile shader

3. Attach shader to program

4. Link program

5. Use program

§ Shader source is just sequence of strings

§ Similar steps to compile a normal program

37

Shader Initialization Code
GLuint initshaders (GLenum type, const char *filename) {

 // Using GLSL shaders, OpenGL book, page 679

 GLuint shader = glCreateShader(type) ;

 GLint compiled ;
 string str = textFileRead (filename) ;

 GLchar * cstr = new GLchar[str.size()+1] ;

 const GLchar * cstr2 = cstr ; // Weirdness to get a const char

 strcpy(cstr,str.c_str()) ;

 glShaderSource (shader, 1, &cstr2, NULL) ;

 glCompileShader (shader) ;

 glGetShaderiv (shader, GL_COMPILE_STATUS, &compiled) ;

 if (!compiled) {

 shadererrors (shader) ;

 throw 3 ;

 }

 return shader ;

}

38

7

Linking Shader Program
GLuint initprogram (GLuint vertexshader, GLuint fragmentshader)

{

 GLuint program = glCreateProgram() ;

 GLint linked ;
 glAttachShader(program, vertexshader) ;

 glAttachShader(program, fragmentshader) ;

 glLinkProgram(program) ;

 glGetProgramiv(program, GL_LINK_STATUS, &linked) ;

 if (linked) glUseProgram(program) ;

 else {

 programerrors(program) ;

 throw 4 ;

 }

 return program ;

}

39
Cliff Lindsay web.cs.wpi.edu/~rich/courses/imgd4000-d09/lectures/gpu.pdf

40

Cliff Lindsay web.cs.wpi.edu/~rich/courses/imgd4000-d09/lectures/gpu.pdf

41

Fragment Shader Compute Lighting
vec4 ComputeLight (const in vec3 direction, const in vec4

lightcolor, const in vec3 normal, const in vec3 halfvec, const
in vec4 mydiffuse, const in vec4 myspecular, const in float
myshininess) {

 float nDotL = dot(normal, direction) ;

 vec4 lambert = mydiffuse * lightcolor * max (nDotL, 0.0) ;

 float nDotH = dot(normal, halfvec) ;

 vec4 phong = myspecular * lightcolor * pow (max(nDotH, 0.0),
myshininess) ;

 vec4 retval = lambert + phong ;

 return retval ;

}

42

Outline

§ Motivation and Demos

§ Programmable Graphics Pipeline

§ Shadow Maps

§ Environment Mapping

43

Shadow and Environment Maps
§ Basic methods to add realism to interactive rendering
§ Shadow maps: image-based way hard shadows

§ Very old technique. Originally Williams 78
§ Many recent (and older) extensions
§ Widely used even in software rendering (RenderMan)
§ Simple alternative to raytracing for shadows

§ Environment maps: image-based complex lighting
§ Again, very old technique. Blinn and Newell 76
§ Huge amount of recent work (some covered in course)

§ Together, give most of realistic effects we want
§ But cannot be easily combined!!
§ See Annen 08 [real-time all-frequency shadows dynamic

scenes] for one approach: convolution soft shadows

44

8

Common Real-time Shadow Techniques

Shadow
volumes

Light maps

Projected
planar
shadows

Hybrid
approaches

This slide, others courtesy Mark Kilgard

45

Problems

Mostly tricks with lots of limitations

§ Projected planar shadows
works well only on flat surfaces

§ Stenciled shadow volumes
determining the shadow volume is hard work

§ Light maps
totally unsuited for dynamic shadows

§ In general, hard to get everything shadowing everything

46

Shadow Mapping

§ Lance Williams: Brute Force in image space
(shadow maps in 1978, but other similar ideas like
Z buffer, bump mapping using textures and so on)

§ Completely image-space algorithm
§ no knowledge of scene’s geometry is required
§ must deal with aliasing artifacts

§ Well known software rendering technique
§ Basic shadowing technique for Toy Story, etc.

47

Phase 1: Render from Light

§ Depth image from light source

48

Phase 1: Render from Light

§ Depth image from light source

49

Phase 2: Render from Eye

§ Standard image (with depth) from eye

Eye

50

9

Phase 2+: Project to light for shadows

§ Project visible points in eye view back to light source

Eye

(Reprojected) depths match for light and eye. VISIBLE

51

Phase 2+: Project to light for shadows

Eye

(Reprojected) depths from light, eye not the same. BLOCKED!!

§ Project visible points in eye view back to light source

52

Visualizing Shadow Mapping

§ A fairly complex scene with shadows

the point
light source

53

Visualizing Shadow Mapping

§ Compare with and without shadows

with shadows without shadows

54

Visualizing Shadow Mapping

§ The scene from the light’s point-of-view

FYI: from the
eye’’s point-of-view
again

55

Visualizing Shadow Mapping

§ The depth buffer from the light’s point-of-view

FYI: from the
light’’s point-of-view
again

56

10

Visualizing Shadow Mapping

§ Projecting the depth map onto the eye’s view

FYI: depth map for
light’’s point-of-view
again

57

Visualizing Shadow Mapping

§ Comparing light distance to light depth map

Green is
where the

light planar
distance and

the light
depth map

are
approximatel

y equal

Non-green is
where
shadows
should be

58

Visualizing Shadow Mapping

§ Scene with shadows

Notice how
specular

highlights
never appear

in shadows

Notice how
curved
surfaces cast
shadows on
each other

59

Hardware Shadow Map Filtering

“Percentage Closer” filtering
§ Normal texture filtering just averages color components
§ Averaging depth values does NOT work
§ Solution [Reeves, SIGGRAPH 87]

§ Hardware performs comparison for each sample
§ Then, averages results of comparisons

§ Provides anti-aliasing at shadow map edges
§ Not soft shadows in the umbra/penumbra sense

60

Hardware Shadow Map Filtering

GL_NEAREST: blocky GL_LINEAR: antialiased edges

Low shadow map resolution
used to heighten filtering artifacts

61

Problems with shadow maps

§ Hard shadows (point lights only)

§ Quality depends on shadow map resolution
(general problem with image-based techniques)

§ Involves equality comparison of floating point depth
values means issues of scale, bias, tolerance

62

11

Reflection Maps

Blinn and Newell, 1976

63

Environment Maps

Miller and Hoffman, 1984

64

Environment Maps

IInntteerrffaaccee, Chou and Williams (ca. 1985)

65

Environment Maps

Cubical Environment Map
180 degree fisheye
Photo by R. Packo

Cylindrical Panoramas

66

Reflectance Maps

§ Reflectance Maps (Index by N)

§ Horn, 1977

§ Irradiance (N) and Phong (R) Reflection Maps

§ Miller and Hoffman, 1984

Mirror Sphere Chrome Sphere Matte Sphere

67

Irradiance Environment Maps

Incident Radiance
(Illumination Environment Map)

Irradiance Environment Map

R N

68

12

Assumptions

§ Diffuse surfaces

§ Distant illumination

§ No shadowing, interreflection

Hence, Irradiance a function of surface normal

69

Diffuse Reflection

B Er=
Radiosity

(image intensity)
Reflectance

(albedo/texture)
Irradiance

(incoming light)

×=

quake light map

70

Analytic Irradiance Formula

 Lambertian surface
acts like low-pass filter

 Elm = Al Llm

lA

p

2 / 3p

/ 4p

0

Al = 2π (−1)
l
2−1

(l + 2)(l −1)
l!

2l l
2 !()2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

l even

l0 1 2

Ramamoorthi and Hanrahan 01
Basri and Jacobs 01

71

9 Parameter Approximation

-1-2 0 1 2

0

1

2

 Ylm(θ ,ϕ)

 x y z

 xy yz 3z2 −1 zx x
2 − y2

 l

 m

Order 0
1 term

RMS error = 25 %

Exact image

72

9 Parameter Approximation

-1-2 0 1 2

0

1

2

 Ylm(θ ,ϕ)

 x y z

 xy yz 3z2 −1 zx x
2 − y2

 l

 m

Exact image Order 1
4 terms

RMS Error = 8%

73

9 Parameter Approximation

-1-2 0 1 2

0

1

2

 Ylm(θ ,ϕ)

 x y z

 xy yz 3z2 −1 zx x
2 − y2

 l

 m

Exact image Order 2
9 terms

RMS Error = 1%

For any illumination, average
error < 3% [Basri Jacobs 01]

74

13

Real-Time Rendering

Simple procedural rendering method (no textures)
§ Requires only matrix-vector multiply and dot-product
§ In software or NVIDIA vertex programming hardware

Widely used in Games (AMPED for Microsoft
Xbox), Movies (Pixar, Framestore CFC, …)

 E(n) = ntMn

surface float1 irradmat (matrix4 M, float3 v) {
 float4 n = {v , 1} ;
 return dot(n , M*n) ;
}

75

Environment Map Summary

§ Very popular for interactive rendering

§ Extensions handle complex materials

§ Shadows with precomputed transfer

§ But cannot directly combine with shadow maps

§ Limited to distant lighting assumption

76

Resources

§ OpenGL red book (latest includes GLSL)
§ Web tutorials: http://www.lighthouse3d.com/tutorials/
§ Older books: OpenGL Shading Language book (Rost),

The Cg Tutorial, …
§ http://www.realtimerendering.com

§ Real-Time Rendering by Moller and Haines
§ Debevec http://www.debevec.org/ReflectionMapping/

§ Links to Miller and Hoffman original, Haeberli/Segal
§ http://www.cs.ucsd.edu/~ravir/papers/envmap

§ Also papers by Heidrich, Cabral, …
§ Lots of information available on web…
§ Look at resources from CSE 274 website (Wi, Fa 15)

77

