Computer Graphics Il: Rendering

CSE 168 [Spr 25], Lectures 18/19: Real-Time Rendering
Ravi Ramamoorthi

http://viscomp.ucsd.edu/classes/cse168/sp25

Motivation

Today, create photorealistic computer graphics
Complex geometry, lighting, materials, shadows
Computer-generated movies/special effects (difficult or
impossible to tell real from rendered...)

CSE 168 images from rendering competition (2011)

But algorithms were very slow (hours to days)

Evolution of 3D graphics rendering

Interactive 3D graphics pipeline as in OpenGL
Earliest SGI machines (Clark 82) to today
Most of focus on more geometry, texture mapping
Some tweaks for realism (shadow mapping, accum. buffer)

S 7

B~ T

(Kurt Akeley)

To Do

Final Projects due Jun 10
PLEASE FILL OUT SET EVALUATIONS!
KEEP WORKING HARD

Real-Time Rendering

Goal: interactive rendering. Critical in many apps
Games, visualization, computer-aided design, ...

Until 15-20 years ago, focus on complex geometry

-~

sueen
-

Chasm between interactivity, realism

Offline 3D Graphics Rendering

Ray tracing, radiosity, photon mapping
High realism (global illum, shadows, refraction, lighting,..)
But historically very slow techniques

“So, while you and your children ’s children are waiting for ray tracing to take
over the world, what do you do in the meantime? ” Real-Time Rendering

-

e

g

v

Pictures courtesy Henrik Wann Jensen

New Trend: Acquired Data

Image-Based Rendering: Real/precomputed images as input

Also, acquire geometry, lighting, materials from real world

Easy to obtain or precompute lots of high quality data. But

how do we represent and reuse this for (real-time) rendering?

Today: Real-Time Game Renderings

= 478

Unreal Engine 4

<

S Mslle-< Digital Ira: NVIDIA, USC

Goals

Overview of basic techniques for high-quality
real-time rendering

Survey of important concepts and ideas, but do
not go into details of writing code

Some pointers to resources, others on web

One possibility for final project, will need to think
about some ideas on your own

20 years ago

High quality rendering: ray tracing, global illumination
Little change in CSE 168 syllabus, from 2003 to today

Real-Time rendering: Interactive 3D geometry with simple
texture mapping, fake shadows (OpenGL, DirectX)

Complex environment lighting, real materials (velvet, satin,
paints), soft shadows, caustics often omitted in both

Realism, interactivity at cross purposes

Today

Vast increase in CPU power, modern instrs (SSE, Multi-Core)

Real-time raytracing techniques are possible (even on
hardware: NVIDIA OptiX, RTX Raytracing)

4th generation of graphics hardware is programmable

(First 3 gens were wireframe, shaded, textured)
Modern NVIDIA, ATl cards allow vertex, fragment shaders

Great deal of current work on acquiring and rendering with
realistic lighting, materials. .. [Especially at UCSD]

Focus on quality of rendering, not quantity of polygons, texture

Outline

Motivation and Demos
Programmable Graphics Pipeline
Shadow Maps

Environment Mapping

High quality real-time rendering High quality real-time rendering
Photorealism, not just more polygons Photorealism, not just more polygons

Natural lighting, materials, shadows

-

’ Glass Star (courtesy Intel)

{ Glass Vase

[l

Real materials diverse and not easy to represent by simple

Interiors by architect Frank Gehry. Note rich lighting, ranging parameteric models. Want to support measured reflectance.

from localized sources to reflections off vast sheets of glass.

High quality real-time rendering Today: Full Global lllumination

Photorealism, not just more polygons

Natural lighting, materials, shadows

o

>)l’. :
g

small area light, sharp shadows soft and hard shadows
Agrawala et al. 00 Ng et al. 03

Natural lighting creates a mix of soft diffuse and hard shadows.

Applications Programmable Graphics Hardware

Entertainment: Lighting design
Architectural visualization

Material design: Automobile industry
Realistic Video games

Electronic commerce

Programmable Graphics Hardware

' A\ o/

o4

NVIDIA a new dawn demo (may need to type URL)

Relit Images

Ng, Ramamoorthi, Hanrahan 04

Spherical Harmonic Lighting

5 N
Avatar 2010, based on Ramamoorthi and Hanrahan 01, Sloan 02

Precomputation-Based Methods

Static geometry
Precomputation
Real-Time Rendering (relight all-frequency effects)

Involves sophisticated representations, algorithms

Video: Real Time Relighting

Interactive RayTracing

Advantages
Very complex scenes relatively easy (hierarchical bbox)
Complex materials and shading for free
Easy to add global illumination, specularities etc.

Disadvantages
Hard to access data in memory-coherent way
Many samples for complex lighting and materials
Global illumination possible but expensive

Modern developments: Leverage power of modern CPUs,
develop cache-aware, parallel implementations

Recent developments make real-time raytracing mainstream
(NVIDIA OptiX 5 in 2017, RTX chips in 2018, denoise, DLSS)

https://www.voutube.com/watch?v=kcP1NzB49zU

NVIDIA RTX Real-Time RayTracing

REXREMOY""*¢

.'..v_.‘
’ /

NVIDIA.

"RTX will change PC gaming forever. Ray tracing and DLSS make the impossible, possible.” - Robert Bagratuni, CEO,
Mundfish

From SIGGRAPH 18

Real Photo' Sneaker and Turner Whitted at SIGGRAPH 18

Basic Hardware Pipeline

Create geometry, lights, Transform and lighting calcs.)
materials, textures, : Apply per-vertex operations Textures, Cubemaps
cubemaps, ... as inputs

operations

Per-pixel (per-fragment)

Impact: Real-Time

Extend AAF, FSF, MAAF: Predict Filter based on
Deep Learning (sample and Al-based denoising)

NVIDIA software (OptiX 2017), hardware (RTX 2018)

40-year journey: ray tracing curiosity to every pixel

Outline

Motivation and Demos
Programmable Graphics Pipeline
Shadow Maps

Environment Mapping

Geometry or Vertex Pipeline

Model, View T o ——
i

These fixed function stages can be replaced by a general per-vertex
calculation using vertex shaders in modern programmable hardware

Pixel or Fragment Pipeline

Z-buffering Framebuffer

Texture
Mapping

These fixed function stages can be replaced by a general per-fragment
calculation using fragment shaders in modern programmable hardware

Simplified OpenGL Pipeline

User specifies vertices (vertex buffer object)

For each vertex in parallel
OpenGL calls user-specified vertex shader:
Transform vertex (ModelView, Projection), other ops

For each primitive, OpenGL rasterizes

Generates a fragment for each pixel the fragment covers
For each fragment in parallel

OpenGL calls user-specified fragment shader:

Shading and lighting calculations

OpenGL handles z-buffer depth test unless overwritten

Modern OpenGL is “lite” basically just a rasterizer
“Real” action in user-defined vertex, fragment shaders

Shader Setup

Initializing (shader itself discussed later)
Create shader (Vertex and Fragment)
Compile shader

Attach shader to program

Link program

Use program

Shader source is just sequence of strings

Similar steps to compile a normal program

N | Pixel
9 | Operations |

OpenGL Rendering Pipeline

Programmable in
Modern GPUs
(Vertex Shader)

Programmable in
Modern GPUs

'Geometry (Fragment
Vertices Primitive — Shader)

Scan
Conversion
(Rasterize) /

Texture %
Memory | S

(Fragment
\ Operations |

A _ Operations)

Jsyngawel

Traditional Approach: Fixed function pipeline (state machine)

New Development (2003-): Programmable pipeline

Shading Languages

Vertex / Fragment shading described by small program
Written in language similar to C but with restrictions

Long history. Cook’ s paper on Shade Trees,
Renderman for offline rendering

Stanford Real-Time Shading Language, work at SGI
Cg from NVIDIA, HLSL

GLSL directly compatible with OpenGL 2.0 (So, you can
just read the OpenGL Red Book to get started)

Shader Initialization Code

GLuint initshaders (GLenum type, const char *filename) {
// Using GLSL shaders, OpenGL book, page 679
GLuint shader = glCreateShader (type) ;
GLint compiled ;
string str = textFileRead (filename) ;
GLchar * cstr = new GLchar[str.size()+1] ;
const GLchar * cstr2 = cstr ; // Weirdness to get a const char
strcpy (cstr,str.c_str()) ;
glShaderSource (shader, 1, &cstr2, NULL) ;
glCompileShader (shader) ;
glGetShaderiv (shader, GL COMPILE_STATUS, &compiled) ;
if ('compiled) {
shadererrors (shader) ;
throw 3 ;
}

return shader ;

Linking Shader Program

GLuint initprogram (GLuint vertexshader, GLuint fragmentshader)
{
GLuint program = glCreateProgram() ;
GLint linked ;
glAttachShader (program, vertexshader) ;
glAttachShader (program, fragmentshader) ;
glLinkProgram(program) ;
glGetProgramiv (program, GL_LINK STATUS, &linked) ;
if (linked) glUseProgram(program) ;
else {
programerrors (program) ;
throw 4 ;
}

return program ;

varying vec3 N;
varying vec3 v;
| passedin From vs

void main (void)

/l we are in Eye Goordmatss so EyePos is (0,0,0)
vec3 L = nor position.xyz -
vec3 E = normalize(- v)

vec3 R = normalize(-reflect(L,N));

/lcalculate Ambient Term:
vec4 lamb = gl_FrontLightProduct[0].ambient;

/lcalculate Diffuse Term:
vec4 Idiff = gl_FrontLi [0].diffuse * N,L), 0.0);

/I calculate Specular Term:
vec4d Ispec = gl_FrontLightProduct[0].specular
R,E),0.0), gl_F

/I write Total Color:

Cliff Lindsay web.cs.wpi.edu/~rich/courses/imgd4000-d09/lectures/gpu.pdf

Outline

Motivation and Demos
Programmable Graphics Pipeline
Shadow Maps

Environment Mapping

ong

This Shader Does
*Gives eye space location for v
*Transform Surface Normal
*Transform Vertex Location

varying vec3 N;
varying vec3 v;

void main(void)
{
v = vec3(gl_ModelViewMatrix * gl_Vertex); Created For Use
N = normalize(gl_NormalMatrix * gl_Normal); | Within Frag Shader

gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex;

i (Update OpenGL Built-in Variable for Vertex Position)

Cliff Lindsay web.cs.wpi.edu/~rich/courses/imgd4000-d09/lectures/gpu.pdf

Fragment Shader Compute Lighting

vec4 ComputeLight (const in vec3 direction, const in vec4d
lightcolor, const in vec3 normal, const in vec3 halfvec, const
in vec4d mydlffuse, const in vec4 myspecular, const in float
myshininess) {

float nDotL = dot(normal, direction)

vec4 lambert = mydiffuse * lightcolor * max (nDotL, 0.0) ;

float nDotH = dot(normal, halfvec) ;

vecd4 phong = myspecular * lightcolor * pow (max(nDotH, 0.0),
myshininess) ;

vecd retval = lambert + phong ;

return retval ;

Shadow and Environment Maps

Basic methods to add realism to interactive rendering

Shadow maps: image-based way hard shadows
Very old technique. Originally Williams 78
Many recent (and older) extensions
Widely used even in software rendering (RenderMan)
Simple alternative to raytracing for shadows

Environment maps: image-based complex lighting
Again, very old technique. Blinn and Newell 76
Huge amount of recent work (some covered in course)

Together, give most of realistic effects we want
But cannot be easily combined!!
See Annen 08 [real-time all-frequency shadows dynamic
scenes] for one approach: convolution soft shadows

Common Real-time Shadow Techniques

Projected Shadow

pf’::’ volumes
shadows N

Hybrid
approaches

Light maps
This slide, others courtesy Mark Kilgard

Shadow Mapping
Lance Williams: Brute Force in image space

(shadow maps in 1978, but other similar ideas like
Z buffer, bump mapping using textures and so on)

Completely image-space algorithm
no knowledge of scene’ s geometry is required
must deal with aliasing artifacts

Well known software rendering technique
Basic shadowing technique for Toy Story, etc.

Phase 1: Render from Light

Depth image from light source

Xt
A

Problems

Mostly tricks with lots of limitations

Projected planar shadows
works well only on flat surfaces

Stenciled shadow volumes
determining the shadow volume is hard work

Light maps
totally unsuited for dynamic shadows

In general, hard to get everything shadowing everything

Phase 1: Render from Light

Depth image from light source

%3

Phase 2: Render from Eye

Standard image (with depth) from eye

23
A

Phase 2+: Project to light for shadows Phase 2+: Project to light for shadows

Project visible points in eye view back to light source Project visible points in eye view back to light source

3t
AN

J
(Reprojected) depths match for light and eye. VISIBLE (Reprojected) depths from light, eye not the same. BLOCKED!!

Visualizing Shadow Mapping Visualizing Shadow Mapping

A fairly complex scene with shadows Compare with and without shadows

the point
light source

with shadows without shadows

Visualizing Shadow Mapping Visualizing Shadow Mapping

The scene from the light’ s point-of-view The depth buffer from the light’ s point-of-view

FYI: from the
eye’s point-of-view

. FYI: from the
again

light’s point-of-view
again

Visualizing Shadow Mapping

Projecting the depth map onto the eye’ s view

FYI: depth map for
light’s point-of-view
again

Visualizing Shadow Mapping

Scene with shadows

Notice how Notice how

specular p ? curved
highlights surfaces cast

never appear shadows on
in shadows each other

Hardware Shadow Map Filtering

Low shadow map resolution
used to heighten filtering artifacts

Visualizing Shadow Mapping

Comparing light distance to light depth map

Green is
where the
light planar
distance and
the light
depth map
are
approximatel
y equal

Non-green is
where
shadows
should be

Hardware Shadow Map Filtering

“Percentage Closer” filtering

Normal texture filtering just averages color components
Averaging depth values does NOT work

Solution [Reeves, SIGGRAPH 87]
Hardware performs comparison for each sample
Then, averages results of comparisons
Provides anti-aliasing at shadow map edges
Not soft shadows in the umbra/penumbra sense

Problems with shadow maps

Hard shadows (point lights only)

Quality depends on shadow map resolution
(general problem with image-based techniques)

Involves equality comparison of floating point depth
values means issues of scale, bias, tolerance

10

Reflection Maps Environment Maps

Miller and Hoffman, 1984

Blinn and Newell, 1976

Environment Maps Environment Maps
TERT _ TT——

> _;i
“_./
" | i

N |
e u‘\ﬁ\\‘ W

ur

\\ : :
T A
wd - 180 degree fisheye
Interface, Chou and Williams (ca. 1985) Cubical Environment Map Photo by R. Packo

Reflectance Maps Irradiance Environment Maps

Reflectance Maps (Index by N)
Horn, 1977

Irradiance (N) and Phong (R) Reflection Maps
Miller and Hoffman, 1984

Incident Radiance Irradiance Environment Map
(Illumination Environment Map)

Mirror Sphere Chrome Sphere Matte Sphere

Assumptions Diffuse Reflection

Diffuse surfaces B — pE
|

Distant illumination
Radiosity / Reflectance\lrradiance

No shadowing, interreflection (image intensity) (albedo/texture) (incoming light)
Hence, Irradiance a function of surface normal o X l ' I

quake light map

Analytic Irradiance Formula 9 Parameter Approximation

Lambertian surface .

acts like low-pass filter Exact image

E =AL

Im " Im

Y (6,9)
RMS error =25 % |:| :

[even

Ramamoorthi and Hanrahan 01 _ 1"
Basri and Jacobs 01 AT (=D o

9 Parameter Approximation 9 Parameter Approximation

Order 1

n Order 2
4 terms Exactiage 9 terms

RMS Error = 8% RMS Error = 1%

For any illumination, average
error < 3% [Basri Jacobs 01]

Real-Time Rendering Environment Map Summary

E(n) = ntMn Very popular for interactive rendering

Simple procedural rendering method (no textures) Extensions handle complex materials
Requires only matrix-vector multiply and dot-product .
In software or NVIDIA vertex programming hardware Shadows with precomputed transfer

Widely used in Games (AMPED for Microsoft

Xbox), Movies (Pixar, Framestore CFC, ...) But cannot directly combine with shadow maps

Limited to distant lighting assumption

Resources

OpenGL red book (latest includes GLSL)
Web tutorials:

Older books: OpenGL Shading Language book (Rost),
The Cg Tutorial, ...

Real-Time Rendering by Moller and Haines

Debevec
Links to Miller and Hoffman original, Haeberli/Segal

Also papers by Heidrich, Cabral, ...
Lots of information available on web...
| nok at recniirces from CSE 274 wehegite (\Wi Fa 15)

