

Computer Graphics II: Rendering

CSE 168 [Spr 25], Lecture 16: Precomputed Rendering
Ravi Ramamoorthi

<http://viscomp.ucsd.edu/classes/cse168/sp25>

1

To Do

- Final Project Milestones due on May 28
 - 1-2 page PDF or website with at least one image
 - Brief description of project, proposal for final version
 - [1-2 para proposal of what you hope to accomplish]
 - Must include image milestone of what's done so far
 - We may say ok or schedule time to meet, discuss
 - Talk to us if any difficulty finding project (Assignment gives some well specified, loose, other options, you can do anything else related to the course too).

2

Motivation

- Next lecture: Image-Based Rendering. Use measured data (real photographs) and interpolate for realistic real-time
- Why not apply to real-time rendering?
 - Precompute (offline) some information (images) of interest
 - Must assume something about scene is constant to do so
 - Thereafter real-time rendering. Often accelerate hardware
- Easier and harder than conventional IBR
 - Easier because synthetic scenes give info re geometry, reflectance (but CG rendering often longer than nature)
 - Harder because of more complex effects (lighting from all directions for instance, not just changing view)
- Representations and Signal-Processing crucial

3

My General Philosophy

- This general line of work is a large data management and signal-processing problem
- Precompute high-dimensional complex data
- Store efficiently (find right mathematical represent.)
- Render in real-time
 - Worry about systems issues like caching
 - Good signal-processing: use only small amount of data but guarantee high fidelity
- Many insights into structure of lighting, BRDFs, ...
 - Not just blind interpolation; signal processing

4

Precomputation-Based Relighting

- Analyze precomputed images of scene

5

Precomputation-Based Relighting

- Analyze precomputed images of scene

6

Assumptions

- Static geometry
- Precomputation
- Real-Time Rendering (relight all-frequency effects)
 - Exploit linearity of light transport for this
 - Later, change viewpoint as well

7

Why is This Hard?

- Plain graphics hardware supports only simple (point) lights, BRDFs (Phong) without any shadows
- Shadow maps can handle point lights (hard shadows)
- Environment maps complex lighting, BRDFs but no shadows
- IBR can often do changing view, fixed lighting
- How to do complex shadows in complex lighting?
- With dynamically changing illumination and view?

8

Relighting as a Matrix-Vector Multiply

$$\begin{bmatrix} P_1 \\ P_2 \\ P_3 \\ \vdots \\ P_N \end{bmatrix} = \begin{bmatrix} T_{11} & T_{12} & \cdots & T_{1M} \\ T_{21} & T_{22} & \cdots & T_{2M} \\ T_{31} & T_{32} & \cdots & T_{3M} \\ \vdots & \vdots & \ddots & \vdots \\ T_{N1} & T_{N2} & \cdots & T_{NM} \end{bmatrix} \begin{bmatrix} L_1 \\ L_2 \\ \vdots \\ L_M \end{bmatrix}$$

9

Relighting as a Matrix-Vector Multiply

$$\begin{bmatrix} P_1 \\ P_2 \\ P_3 \\ \vdots \\ P_N \end{bmatrix} = \begin{bmatrix} T_{11} & T_{12} & \cdots & T_{1M} \\ T_{21} & T_{22} & \cdots & T_{2M} \\ T_{31} & T_{32} & \cdots & T_{3M} \\ \vdots & \vdots & \ddots & \vdots \\ T_{N1} & T_{N2} & \cdots & T_{NM} \end{bmatrix} \begin{bmatrix} L_1 \\ L_2 \\ \vdots \\ L_M \end{bmatrix}$$

Output Image (Pixel Vector)

Input Lighting (Cubemap Vector)

Precomputed Transport Matrix

10

Matrix Columns (Images)

$$\begin{bmatrix} T_{11} & T_{12} & \cdots & T_{1M} \\ T_{21} & T_{22} & \cdots & T_{2M} \\ T_{31} & T_{32} & \cdots & T_{3M} \\ \vdots & \vdots & \ddots & \vdots \\ T_{N1} & T_{N2} & \cdots & T_{NM} \end{bmatrix}$$

11

Precompute: Ray-Trace Image Cols

$$\begin{bmatrix} T_{11} & T_{12} & \cdots & T_{1M} \\ T_{21} & T_{22} & \cdots & T_{2M} \\ T_{31} & T_{32} & \cdots & T_{3M} \\ \vdots & \vdots & \ddots & \vdots \\ T_{N1} & T_{N2} & \cdots & T_{NM} \end{bmatrix}$$

12

Precompute 2: Rasterize Matrix Rows

$$\begin{bmatrix} T_{11} & T_{12} & \cdots & T_{1M} \\ T_{21} & T_{22} & \cdots & T_{2M} \\ T_{31} & T_{32} & \cdots & T_{3M} \\ \vdots & \vdots & \ddots & \vdots \\ T_{N1} & T_{N2} & \cdots & T_{NM} \end{bmatrix} \quad \begin{array}{c} \text{Rasterized Matrix Rows} \\ \text{Image} \end{array}$$

13

Problem Definition

Matrix is Enormous

- 512 x 512 pixel images
- 6 x 64 x 64 cubemap environments

Full matrix-vector multiplication is intractable

- On the order of 10^{10} operations *per frame*

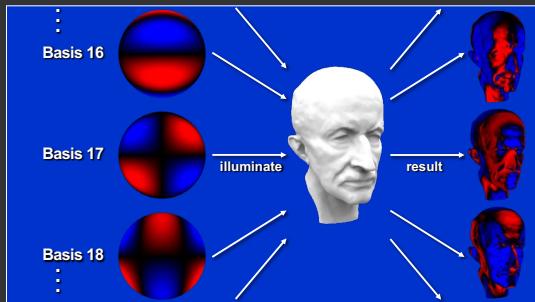
How to relight quickly?

14

Outline

- Motivation and Background
- *Compression methods*
 - Low frequency linear spherical harmonic approximation
- Factorization and PCA
- Local factorization and clustered PCA
- Non-linear wavelet approximation
- Changing view as well as lighting
 - Clustered PCA
 - Factored BRDFs
 - Triple Product Integrals

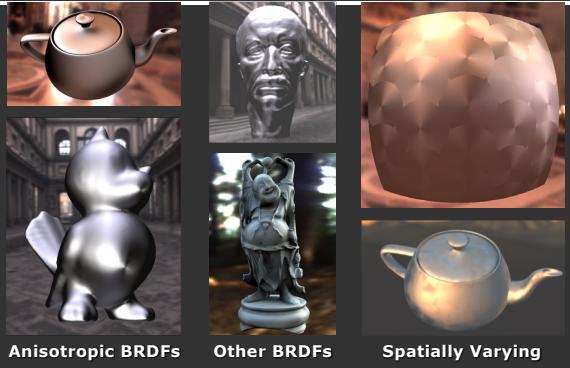
15


Precomputed Radiance Transfer

- Better light integration and transport
 - dynamic, area lights
 - self-shadowing
 - interreflections
- For diffuse and glossy surfaces
- At real-time rates
- Sloan et al. 02 (most cited rendering paper in last 20 years 1000+, widely used in games, movie production: Spherical Harmonic Lighting)

16

Precomputation: Spherical Harmonics


17

Diffuse Transfer Results

18

Arbitrary BRDF Results

19

Relighting as a Matrix-Vector Multiply

$$\begin{bmatrix} P_1 \\ P_2 \\ P_3 \\ \vdots \\ P_N \end{bmatrix} = \begin{bmatrix} T_{11} & T_{12} & \cdots & T_{1M} \\ T_{21} & T_{22} & \cdots & T_{2M} \\ T_{31} & T_{32} & \cdots & T_{3M} \\ \vdots & \vdots & \ddots & \vdots \\ T_{N1} & T_{N2} & \cdots & T_{NM} \end{bmatrix} \begin{bmatrix} L_1 \\ L_2 \\ \vdots \\ L_M \end{bmatrix}$$

20

Idea of Compression

- The vector is projected onto low-frequency components (say 25). Size greatly reduced.
- Hence, only 25 matrix columns
- But each pixel still treated separately (still have 300000 matrix rows for 512 x 512 image)
- Actually, for each pixel, dot product of matrix row (25 elems) and lighting vector (25 elems) in hardware
- Good technique (common in games, movies) but useful only for broad low-frequency lighting

21

Outline

- Motivation and Background
- Compression methods*
 - Low frequency linear spherical harmonic approximation
 - Factorization and PCA
 - Local factorization and clustered PCA
 - Non-linear wavelet approximation
- Changing view as well as lighting
 - Clustered PCA
 - Factored BRDFs
 - Triple Product Integrals

22

PCA or SVD factorization

- SVD:

$$\mathbf{P} \underset{p \times n}{=} \mathbf{E} \underset{p \times p}{\times} \mathbf{S} \underset{p \times n}{\times} \mathbf{C}^T \underset{n \times n}{}$$

↑
diagonal matrix
(singular values)

- Applying Rank b :

$$\mathbf{P} \underset{p \times n}{=} \mathbf{E} \underset{p \times b}{\times} \mathbf{S} \underset{b \times b}{\times} \mathbf{C}^T \underset{b \times n}{}$$

- Absorbing \mathbf{S}^T values into \mathbf{C}^T :

$$\mathbf{P} \underset{p \times n}{=} \mathbf{E} \underset{p \times b}{\times} \mathbf{L} \underset{b \times n}{}$$

23

Idea of Compression

- Represent matrix (rather than light vector) compactly
- Can be (and is) combined with low frequency vector
- Useful in broad contexts.
 - BRDF factorization for real-time rendering (reduce 4D BRDF to 2D texture maps) McCool et al. 01 etc
 - Surface Light field factorization for real-time rendering (4D to 2D maps) Chen et al. 02, Nishino et al. 01
 - Factorization of Orientation Light field for complex lighting and BRDFs (4D to 2D) Latta et al. 02
- Not too useful for general precomput. relighting**
 - Transport matrix not low-dimensional!!

24

Local or Clustered PCA

- Exploit local coherence (in say 16x16 pixel blocks)
 - Idea: light transport is locally low-dimensional. Why?
 - Even though globally complex
 - See Mahajan et al. 07 for theoretical analysis
- Original idea: Each triangle separately
 - Example: Surface Light Fields 3D subspace works well
 - Vague analysis of size of triangles
 - Instead of triangle, 16x16 image blocks [Nayar et al. 04]
- Clustered PCA [Sloan et al. 2003]
 - Combines two widely used compression techniques: Vector Quantization or VQ and Principal Component Analysis
 - For complex geometry, no need for parameterization / topology

25

Image-Based Rendering

Practical Case

Human Face

Zickler, Enrique, Ramamoorthi, Belhumeur 05. 06

26

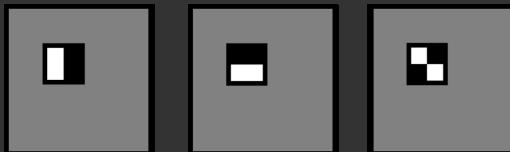
Outline

- Motivation and Background
- *Compression methods*
 - Low frequency linear spherical harmonic approximation
 - Factorization and PCA
 - Local factorization and clustered PCA
 - *Non-linear wavelet approximation*
- Changing view as well as lighting
 - Clustered PCA
 - Factored BRDFs
 - Triple Product Integrals

27

Sparse Matrix-Vector Multiplication

Choose data representations with mostly zeroes


Vector: Use *non-linear wavelet approximation* on lighting

Matrix: Wavelet-encode transport rows

$$\begin{bmatrix} T_{11} & T_{12} & \cdots & T_{1M} \\ T_{21} & T_{22} & \cdots & T_{2M} \\ T_{31} & T_{32} & \cdots & T_{3M} \\ \vdots & \vdots & \ddots & \vdots \\ T_{N1} & T_{N2} & \cdots & T_{NM} \end{bmatrix} \begin{bmatrix} L_1 \\ L_2 \\ \vdots \\ L_M \end{bmatrix}$$

28

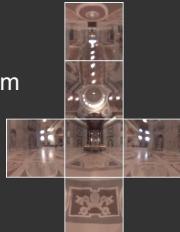
Haar Wavelet Basis

29

Non-linear Wavelet Approximation

Wavelets provide dual space / frequency locality

- Large wavelets capture low frequency area lighting
- Small wavelets capture high frequency compact features


Non-linear Approximation

- Use a **dynamic** set of approximating functions (*depends on each frame's lighting*)
- By contrast, linear approx. uses **fixed** set of basis functions (like 25 lowest frequency spherical harmonics)
- We choose 10' s - 100' s from a basis of 24,576 wavelets

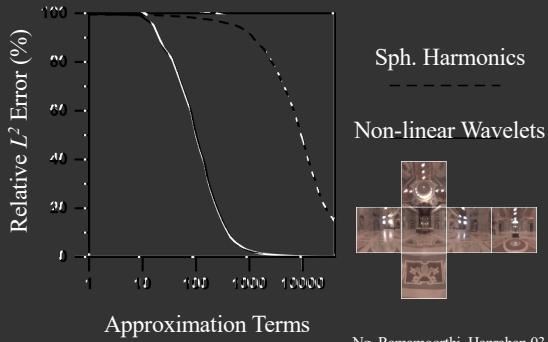
30

Non-linear Wavelet Light Approximation

Wavelet Transform

31

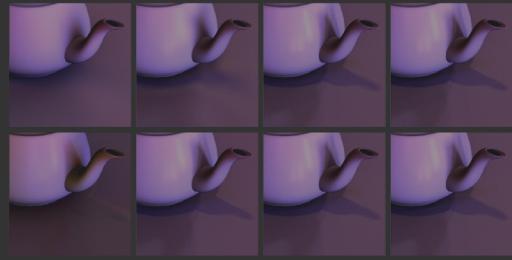
Non-linear Wavelet Light Approximation


$$\begin{bmatrix} 0 \\ L_2 \\ 0 \\ 0 \\ 0 \\ L_6 \\ \vdots \\ 0 \end{bmatrix}$$

Non-linear Approximation

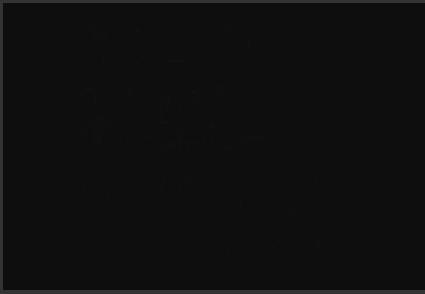
Retain 0.1% – 1% terms

32


Error in Lighting: St Peter's Basilica

33

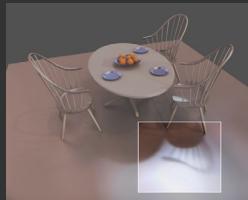
Output Image Comparison


Top: Linear Spherical Harmonic Approximation
Bottom: Non-linear Wavelet Approximation

25 200 2,000 20,000

34

Video: Real Time Relighting


35

Outline

- Motivation and Background
- Compression methods
 - Low frequency linear spherical harmonic approximation
 - Factorization and PCA
 - Local factorization and clustered PCA
 - Non-linear wavelet approximation
- *Changing view as well as lighting*
 - *Clustered PCA*
 - *Factored BRDFs*
 - *Triple Product Integrals*

36

Changing Only The View

37

Problem Characterization

6D Precomputation Space

- Distant Lighting (2D)
- View (2D)
- Rigid Geometry (2D)

With ~ 100 samples per dimension

$\sim 10^{12}$ samples total!! : Intractable computation, rendering

38

Clustered PCA

- Use low-frequency light and view variation (Order 4 spherical harmonic = 25 for both; total = $25*25=625$)
- 625 element vector for each vertex
- Apply CPCCA directly (Sloan et al. 2003)
- Does not easily scale to high frequencies
 - Really cubic complexity (number of vertices, illumination directions or harmonics, and view directions or harmonics)
- Practical real-time method on GPU

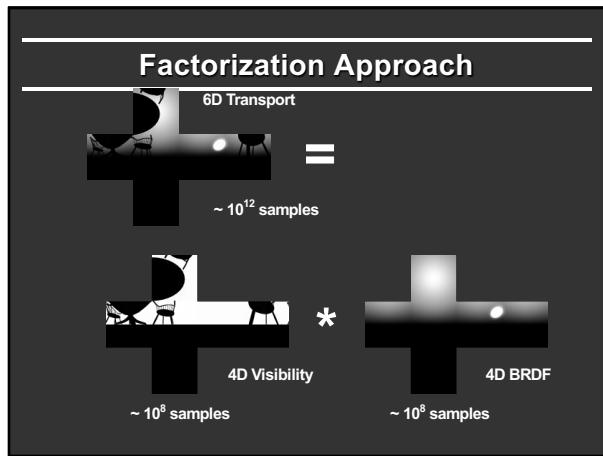
39

Factored BRDFs

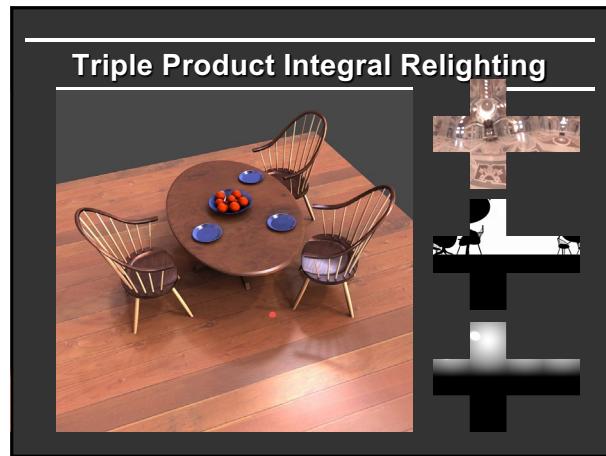
- Sloan et al. 04, Wang et al. 04: All-frequency effects
- Combines lots of things: BRDF factorization, CPCCA, nonlinear approx. with wavelets
- Idea: Factor BRDF to depend on incident, outgoing
 - Incident part handled with view-independent relighting
 - Then linearly combine based on outgoing factor
- Effectively, break problem into a few subproblems that can be solved view-independently and added up
 - Can apply nonlinear wavelet approx. to each subproblem
 - And CPCCA to the matrices for further compression

40

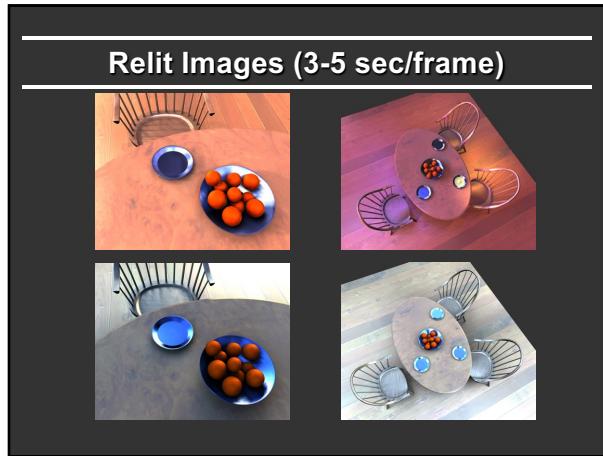
Factored BRDFs: Critique


- Simple, reasonably practical method
- Problem: Non-optimal factorization, few terms
 - Can only handle less glossy materials
 - Accuracy not properly investigated [Mahajan et al 08]
- Very nice synthesis of many existing ideas
- Comparison to triple product integrals
 - Not as deep or cool, but simpler and real-time
 - Limits BRDF fidelity, glossiness much more
 - In a sense, they are different types of factorizations

41

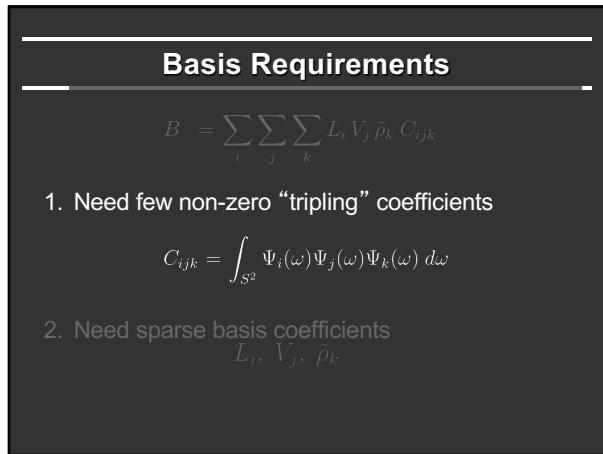

Outline

- Motivation and Background
- Compression methods
 - Low frequency linear spherical harmonic approximation
 - Factorization and PCA
 - Local factorization and clustered PCA
 - Non-linear wavelet approximation
- *Changing view as well as lighting*
 - Clustered PCA
 - Factored BRDFs
 - *Triple Product Integrals*


42

43

44



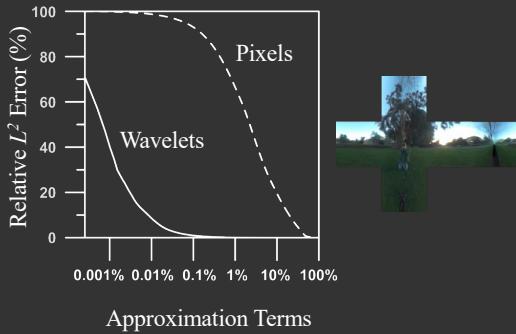
45

Triple Product Integrals

$$\begin{aligned}
 B &= \int_{S^2} L(\omega) V(\omega) \tilde{\rho}(\omega) d\omega \quad \text{[Diagram of a scene with a table and chairs]} \\
 &= \int_{S^2} \left(\sum_i L_i \Psi_i(\omega) \right) \left(\sum_j V_j \Psi_j(\omega) \right) \left(\sum_k \tilde{\rho}_k \Psi_k(\omega) \right) d\omega \\
 &= \sum_i \sum_j \sum_k L_i V_j \tilde{\rho}_k \int_{S^2} \Psi_i(\omega) \Psi_j(\omega) \Psi_k(\omega) d\omega \\
 &= \sum_i \sum_j \sum_k L_i V_j \tilde{\rho}_k C_{ijk}
 \end{aligned}$$

46

47


1. Number of Non-Zero Tripling Coefficients

$$C_{ijk} = \int_{S^2} \Psi_i(\omega) \Psi_j(\omega) \Psi_k(\omega) d\omega$$

Basis Choice	Number Non-Zero C_{ijk}
General (e.g. PCA)	$O(N^3)$
Pixels	$O(N)$
Fourier Series	$O(N^2)$
Sph. Harmonics	$O(N^{5/2})$
Haar Wavelets	$O(N \log N)$

48

2. Sparsity in Light Approx.

49

Summary of Wavelet Results

- Derive direct $O(N \log N)$ triple product algorithm
- Dynamic programming can eliminate $\log N$ term
- Final complexity linear in number of retained basis coefficients

50

Broader Computational Relevance

- Clebsch-Gordan triple product series for spherical harmonics in quantum mechanics (but not focused on computation)
- Essentially no previous work graphics, applied math
- Same machinery applies to basic operation: multiplication
 - Signal multiplication for audio, image compositing,...
 - Compressed signals/videos (e.g. wavelets JPEG 2000)

51

Summary

- Really a big data compression and signal-processing problem
- Apply many standard methods
 - PCA, wavelet, spherical harmonic, factor compression
- And invent new ones
 - VQPCA, wavelet triple products
- Guided by and gives insights into properties of illumination, reflectance, visibility
 - How many terms enough? How much sparsity?

52

Subsequent Work

- My survey 2009 (lecture only covers 2002-2004)
- Varied lighting/view. What about dynamic scenes, BRDFs
 - Much subsequent work [Zhou et al. 05, Ben-Artzi et al. 06]. But still limited for dynamic scenes
- Must work on GPU to be practical
- Sampling on object geometry remains a challenge
- Near-Field Lighting has had some work, remains a challenge
- Applications to lighting design, direct to indirect transfer
- New basis functions and theory
- Newer methods do not require precompute, various GPU tricks
- So far, low-frequency spherical harmonics used in games, all-frequency techniques have had limited applicability

53

Analytic SH Gradients

Analytic Spherical Harmonic Gradients for Real-Time Rendering with Many Polygonal Area Lights

Lifan Wu¹, Guangyan Cai¹, Shuang Zhao², Ravi Ramamoorthi¹

¹ UC San Diego, ² UC Irvine

NO AUDIO

54