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Computer Graphics II: Rendering

CSE 168 [Spr 25], Lecture 13: Monte Carlo Denoising        
Ravi Ramamoorthi

http://viscomp.ucsd.edu/classes/cse168/sp25
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To Do

§ Homework 4 (importance sampling) due May 19

§ These lectures cover more advanced topics
§ May be relevant for your final project
§ Or curiosity in terms of frontiers of modern rendering

§ This lecture on Monte Carlo denoising summary of 
whole CSE 274 class I taught last academic year

§ Topic of great current interest in both research and 
production offline and real-time (OptiX, RTX GPUs)

§ Good idea for final project, or simply leverage 
denoiser built into modern OptiX implementations

§ Can get down to 1-4 samples per pixel.  Amazing!
§ Lecture is high level, ask if need detailed pointers
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Cook et al. [1984] results

depth of field
motion blur

soft shadows

glossy reflection
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Motivation

§ Distribution effects (depth of field, motion blur, global 
illumination, soft shadows) are slow.  Many dimensions sample

§ Ray Tracing physically accurate but slow, not real-time
§ Can we adaptively sample and filter for fast, real-time?
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Monte Carlo Path Tracing

1000 paths/pixel
Jensen
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Sampling and Reconstruction

§ Monte Carlo is noisy at low sample counts

§ Can we reduce time/samples by smart adaptive 
sampling and smart filtering/reconstruction?

§ General area of Monte Carlo denoising 

§ Long history [Mitchell 91, Guo 98]
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Sample result

4 samples/pixel
(40.8 sec)

Path traced sceneFiltered result

4 samples/pixel
(48.9 sec)

[Kalantari et al. 2015]

using only post-process filter!scene by Jo Ann Elliott
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Adaptive sampling + reconstruction
n These algorithms use 2 kinds of noise reduction 

strategies, sometimes combined:
1. Adaptive sampling algorithms

§ Use information from renderer to position new 
samples better to reduce noise

2. Reconstruction (filtering) algorithms
§ Use information from renderer to remove MC 

noise directly

n Both methods have been explored in the past, 
but new algorithms make remarkable advances
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History

§ Adaptive sampling old technique Mitchell et al. 87, 91,…

§ But not very widely used… artifacts, can miss features

§ After seminal papers in 87-91, not much follow on
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Directional Coherence Maps
§ Allocate samples to edges (Guo 98)  Most of variance at 

those edges in the image
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Directional Coherence Maps (Guo 98)

Guo 98
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A Frequency Analysis 
of Light Transport

F. Durand, MIT CSAIL

N. Holzschuch, C. Soler, ARTIS/GRAVIR-IMAG INRIA

E. Chan, MIT CSAIL

F. Sillion, ARTIS/GRAVIR-IMAG INRIA
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Fourier analysis 101

• Spectrum corresponds to blurriness:
– Sharpest feature has size ~ 1/Fmax

• Convolution theorem:
– Multiplication of functions: spectrum is convolved

– Convolution of functions: spectrum is multiplied

• Classical spectra: 
– Box becomes sinc
– Dirac becomes constant
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Transport
• Shear: x’ = x - v d
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Transport in Fourier space
• Shear in primal: x’ = x - v d

• Shear in Fourier, along the other dimension
Ray space Ray space

Fourier space
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Transport becomes Shear

• This is consistent with light field spectra
[Chai et al. 00, Isaksen et al. 00]

From [Chai et al. 2000]
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BRDF integration

• Ray-space: convolution
– Outgoing light: 

convolution of incoming light and BRDF

– For rotationally-invariant BRDFs

• Fourier domain: multiplication 
– Outgoing spectrum:  multiplication of incoming 

spectrum and BRDF spectrum

17

Adaptive shading sampling

• Per-pixel prediction of max. frequency (bandwidth)
– Based on curvature, BRDF, distance to occluder, etc.

– No spectrum computed, just estimate max frequency

Per-pixel bandwidth criterion
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Adaptive shading sampling

• Per-pixel prediction of max. frequency (bandwidth)
– Based on curvature, BRDF, distance to occluder, etc.

– No spectrum computed, just estimate max frequency

Shading samples
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Uniform sampling

20,000 samples
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Adaptive sampling

20,000 samples
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Resurgence (2008 - )

§ Eurographics 2015 STAR report by Zwicker et al. [former 
UCSD faculty]

§ [Durand et al. 2005] Frequency analysis light transport.  
Proposed use for adaptive sampling.  Not very practical
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Multi-Dimensional Adaptive Sampling
§ Hachisuka, Jarosz, … Zwicker, Jensen [MDAS 2008]

§ Scenes with motion blur, depth of field, soft shadows

§ Involves high-dimensional integral, converges slowly

§ Exploit high-dimensional info to sample adaptively

§ Sampling in 2D image plane or other dims inadequate
§ Need to consider full joint high-dimensional space
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Multidimensional Adaptive Sampling
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Multidimensional Adaptive Sampling
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Multi-Dimensional Adaptive Sampling

Motion Blur and Depth of Field 32 samples per pixel
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A-Priori Methods

§ Egan et al. 2009: Frequency Analysis and Sheared 
Filtering for Motion Blur; first deep use frequency anal. 
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Fast Motion Blur Rendering

Garfield: A Tail of Two Kitties
Rhythm & Hues Studios
Twentieth Century-Fox Film Corporation

28

A Simple Approach
§ For each pixel

§ Sample many different moments in time
§ Very expensive.  Can we do better sampling, filtering? 

t = 0.00
t = 0.25
t = 0.50
t = 0.75
t = 1.00

t = [0.0, 1.0]
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Observation 1
§ Motion-blurred images have low spatial frequency

Egan, Tseng, Holzschuch, Durand, Ramamoorthi 09
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Observation 2
§ Neighboring pixels sample correlated signals

t = 5.0
 .
 .
 .
 .
t = 0.0

pixel 1 pixel 2 pixel 3

TI
M

E 
AX

IS
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Our Method
§ Share samples across pixels

§ Use wide filter sheared in space-time

t = 5.0
 .
 .
 .
 .
t = 0.0

pixel 1 pixel 2 pixel 3

TI
M

E 
AX

IS
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Basic Example

x

y t

x

f(x, t)

• Low velocity,  t = [ 0.0, 1.0 ] 

f(x, y)
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Basic Example

x

y t

x

f(x, t)

• High velocity,  t = [ 0.0, 1.0 ] 

f(x, y)
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Shear in Space-Time

x

y t

x

f(x, t)

• Object moving with low velocity

f(x, y)

shear
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Basic Example – Fourier Domain
§ Fourier spectrum, zero velocity 

t

x

f(x, t) F(Ωx, Ωt)
texture 

bandwidth

Ωt

Ωx
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Basic Example – Fourier Domain
§ Low velocity, small shear in both domains

f(x, t) F(Ωx, Ωt)

t

x

slope = 
-speed

Ωt

Ωx
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Basic Example – Fourier Domain
§ Large shear

f(x, t) F(Ωx, Ωt)

t

x Ωt

Ωx
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Basic Example – Fourier Domain
§ Non-linear motion, wedge shaped spectra

f(x, t)

Ωt

Ωx

F(Ωx, Ωt)

t

x

shutter 
bandlimits in 

time

-min 
speed

-max speed
shutter applies blur 

across time
indirectly 

bandlimits in 
space
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Standard Reconstruction Filter

• Standard anti-aliasing and reconstruction filter 
is axis-aligned

Ωt

Fourier Domain

aliasing

Ωx
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Sheared Reconstruction Filter

• Our sheared filter allows for much tighter 
packing of replicas (ie sparse sampling)

Ωt

Fourier Domain

No aliasing!

Ωx
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Car Scene

Static RenderOur Method,
4 samples per pixel

42



8

Car Scene

Ground TruthOur Method,
4 samples per pixel
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Ballerina Video
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Fourier Analysis, Sheared Filtering
Previous Work

§ Shinya 93: Spatio-temporal filtering of uniform velocity
§ Chai et al. 00: Plenoptic Sampling: wedge spectra
§ Hachisuka et al. 08: Multidimensional Adaptive Sampling

Our Subsequent Work 
§ Adaptive Wavelet Rendering [Overbeck et al 09]
§ Area Light Soft Shadows [Egan et al 11a]
§ Spherical Harmonic Directional Occlusion [Egan et al 11b]
§ Fast (real-time) Sheared Filtering [Yan et al 15]

Real-Time Axis-Aligned Filtering
§ Soft Shadows [Mehta Wang Ramamoorthi 12]
§ Global Illumination [Mehta Wang Ramamoorthi Durand 13]
§ Multiple Effects [Mehta Yao Ramamoorthi Durand 14]
§ Multiple Axis-Aligned Filtering [Wu et al  17]
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Fast Sheared Filtering (FSF)
§ Separable sheared filter

Fourier: sheared shape

Primal: separable filter, still 
hard to extend to higher 
dimensions (can be done by 
approximation) 

Fourier: compact pack replicas

Primal: low sampling rate
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Fast Sheared Filtering
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§ Motivation: Cover the spectrum compactly

§ Multiple Axis-Aligned Filter (MAAF)

MAAF: Fourier

p=0
p=1
p=2

p=-1
p=-2
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Video
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Sparse Sampling and Reconstruction
A Posteriori Methods

[Hachisuka et al. 2008]

[Moon et al. 2016]

[Li et al. 2012]

[Rousselle et al. 2012]

A Priori Methods

[Chai et al. 2000] [Durand et al. 2005] [Egan et al. 2009]

[Lehtinen et al. 2012][Mehta et al. 2014] [Yan et al. 2015]
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Adaptive Wavelet Rendering

Overbeck et al 09
General high-D 
effects.  Simple
and fast (renders 
Into wavelet dom)
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Adaptive Wavelet Rendering
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Feature-Space Methods
§ General practical denoising (no frequency) [2012-]

§ General effects (Sec 2.3 of EG STAR Report)

§ General image-space denoising framework 

§ But use auxiliary features (depth, normals, etc.)

§ Basis for methods deployed in industry today
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Random Parameter Filtering

§ Sen Darabi 12, importance of each feature
§ Addresses noisy features (e.g. depth of field)
§ Notion of mutual information

§ Weighted bilateral filter, very good at low samples
§ Parameters determined by feature importance 
§ Auxiliary features are key to beat image denoising
§ Has led to newer methods, commercialization

54
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Random Parameter Filtering
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Subsequent Work

§ SURE (Stein’s unbiased risk estimator: general 
kernels, adaptive sampling, general effects)
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Subsequent Work

§ Moon et al. local linear or polynomial models, treat as 
regression.  Many other methods

§ APR: Polynomial order chosen to minimize error

§ Newest methods use deep learning instead
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Impact: Offline
§ Handle general effects.  Sample and denoise (builds on 

AWR, AAF, FSF, MAAF.  Predict general filter kernel)
§ Many more sophisticated methods available now; used 

in almost every major production rendering software
§ Based on Deep Learning for Monte Carlo Denoising

Bako et al. 17 (not my work)
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Impact: Real-Time
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Impact: Real-Time
§ Extend AAF, FSF, MAAF: Predict Filter based on 

Deep Learning (sample and AI-based denoising)

§ NVIDIA software (OptiX 2017), hardware (RTX 2018)

§ 40-year journey: ray tracing curiosity to every pixel 

Whitted 79 (74 min 512x512) NVIDIA RTX 2018, OptIX: Pixar real-time previewer
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From SIGGRAPH 18

Real Photo: Speaker and Turner Whitted at SIGGRAPH 18
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