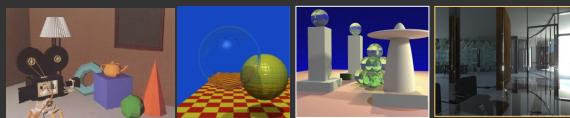


Computer Graphics II: Rendering

CSE 168[Spr 25],Lecture 11: Fourier Analysis, Sampling
Ravi Ramamoorthi

<http://viscomp.ucsd.edu/classes/cse168/sp25>



1

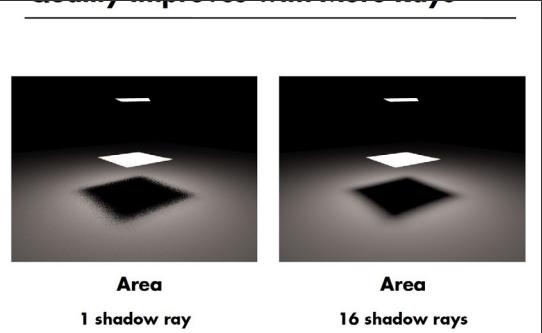
To Do

- Start immediately on homework 4.
- Start thinking about final project
- This lecture gives core background on sampling and signal-processing (bear in mind image processing)

Some slides courtesy Pat Hanrahan

2

Quality Improves with More Rays



3

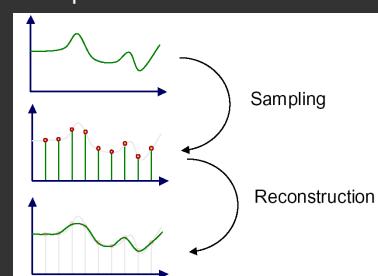
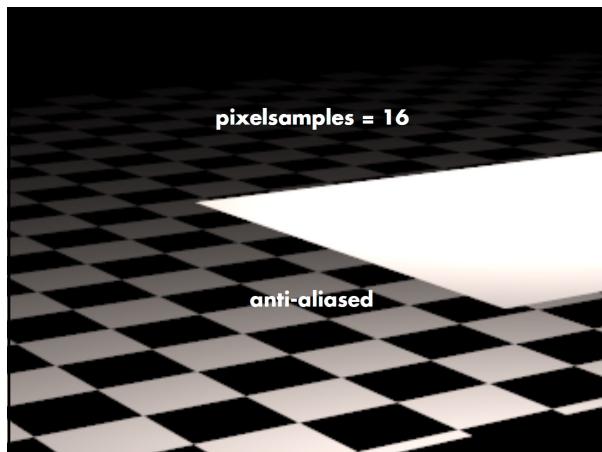
pixelsamples = 1

jaggies

4

Sampling and Reconstruction

- An image is a 2D array of samples
- Discrete samples from real-world continuous signal



5

6

Sampling and Reconstruction

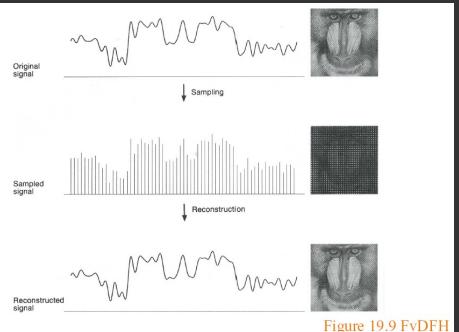
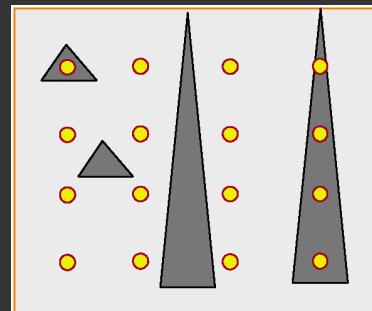


Figure 19.9 FvDFH

7

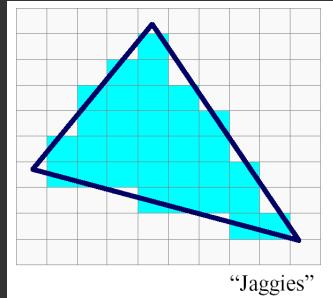
(Spatial) Aliasing



8

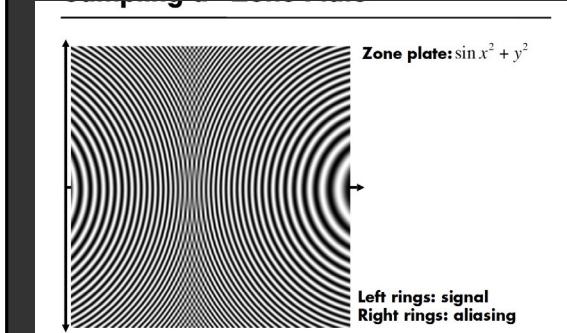
(Spatial) Aliasing

- Jaggies probably biggest aliasing problem



9

Sampling a Zone Plate



10

Sampling and Aliasing

- Artifacts due to undersampling or poor reconstruction
- Formally, high frequencies masquerading as low
- E.g. high frequency line as low freq jaggies

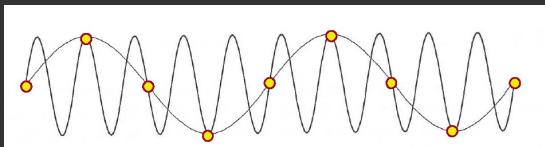
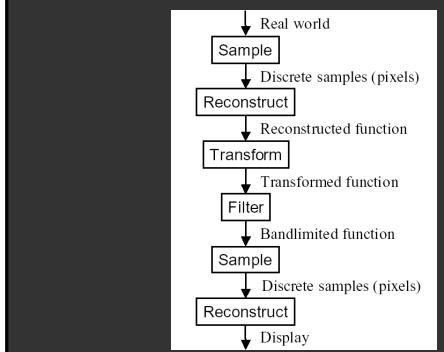


Figure 14.17 FvDFH

11

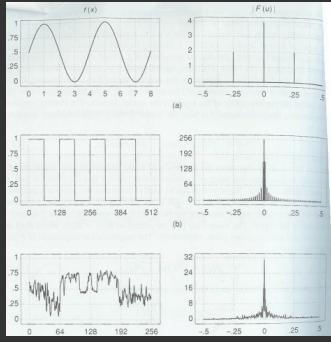
Image Processing pipeline



12

Fourier Transform: Examples 1

Single sine curve
(+constant DC term)



$$f(x) = \sum_{u=-\infty}^{+\infty} F(u) e^{2\pi i u x}$$

$$F(u) = \int_0^1 f(x) e^{-2\pi i u x} dx$$

19

Fourier Transform Examples 2

Forward Transform: $F(u) = \int_{-\infty}^{\infty} f(x) e^{-2\pi i u x} dx$

Inverse Transform: $f(x) = \int_{-\infty}^{+\infty} F(u) e^{2\pi i u x} du$

- Common examples

$f(x)$	$F(u)$
$\delta(x - x_0)$	$e^{-2\pi i u x_0}$
1	$\delta(u)$
e^{-ax^2}	$\sqrt{\pi/a} e^{-\pi^2 u^2 / a}$

20

Fourier Transform Properties

Forward Transform: $F(u) = \int_{-\infty}^{\infty} f(x) e^{-2\pi i u x} dx$

Inverse Transform: $f(x) = \int_{-\infty}^{+\infty} F(u) e^{2\pi i u x} du$

- Common properties

- Linearity: $F(af(x) + bg(x)) = aF(f(x)) + bF(g(x))$

- Derivatives: [integrate by parts] $F(f'(x)) = \int_{-\infty}^{\infty} f'(x) e^{-2\pi i u x} dx = 2\pi i u F(u)$

- 2D Fourier Transform

Forward Transform: $F(u,v) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y) e^{-2\pi i u x} e^{-2\pi i v y} dx dy$

- Convolution (next) inverse Transform: $f(x,y) = \int_{-\infty}^{\infty} \int_{-\infty}^{+\infty} F(u,v) e^{2\pi i u x} e^{2\pi i v y} du dv$

21

Sampling Theorem, Bandlimiting

- A signal can be reconstructed from its samples, if the original signal has no frequencies above half the sampling frequency – Shannon
- The minimum sampling rate for a bandlimited function is called the Nyquist rate

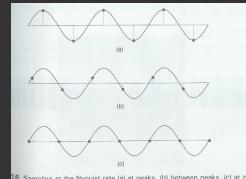
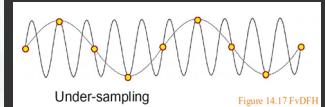


Figure 14.17 FvDFH

22

Sampling Theorem, Bandlimiting

- A signal can be reconstructed from its samples, if the original signal has no frequencies above half the sampling frequency – Shannon
- The minimum sampling rate for a bandlimited function is called the Nyquist rate
- A signal is bandlimited if the highest frequency is bounded. This frequency is called the bandwidth
- In general, when we transform, we want to filter to bandlimit before sampling, to avoid aliasing

23

Antialiasing

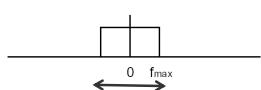
- Sample at higher rate
 - Not always possible
 - Real world: lines have infinitely high frequencies, can't sample at high enough resolution
- Prefilter to bandlimit signal
 - Low-pass filtering (blurring)
 - Trade blurriness for aliasing

24

Ideal bandlimiting filter

- Formal derivation is homework exercise

- Frequency domain



- Spatial domain

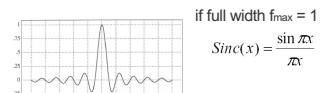


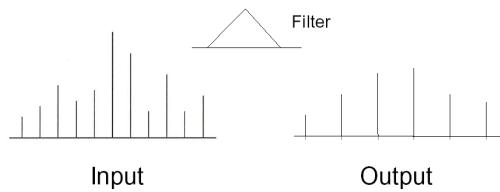
Figure 4.5 Wolberg

25

Convolution 1

- Spatial domain: output pixel is weighted sum of pixels in neighborhood of input image

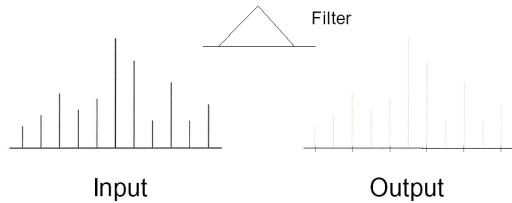
- Pattern of weights is the “filter”



26

Convolution 2

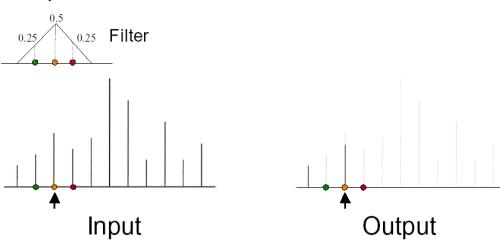
- Example 1:



27

Convolution 3

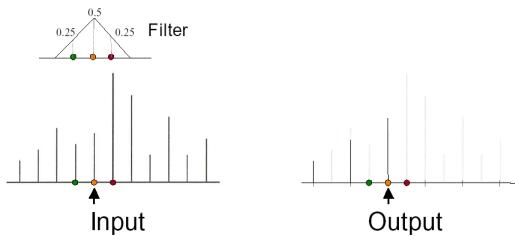
- Example 1:



28

Convolution 4

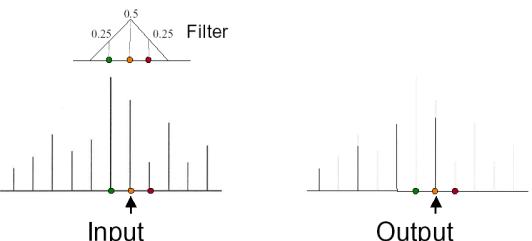
- Example 1:



29

Convolution 5

- Example 1:



30

Convolution in Frequency Domain

Forward Transform: $F(u) = \int_{-\infty}^{\infty} f(x) e^{-2\pi i ux} dx$

Inverse Transform: $f(x) = \int_{-\infty}^{+\infty} F(u) e^{2\pi i ux} du$

- Convolution (f is signal ; g is filter [or vice versa])

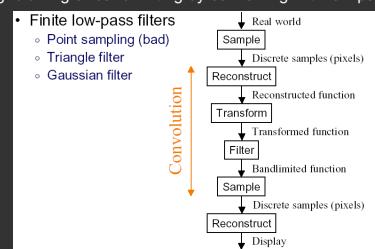
$$h(y) = \int_{-\infty}^{+\infty} f(x)g(y-x)dx = \int_{-\infty}^{+\infty} g(x)f(y-x)dx$$

$$h = f * g \text{ or } f \otimes g$$
- Fourier analysis (frequency domain multiplication) $H(u) = F(u)G(u)$

31

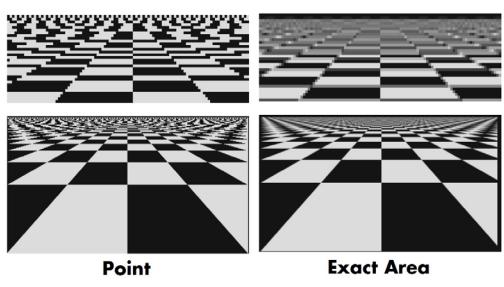
Practical Image Processing

- Discrete convolution (in spatial domain) with filters for various digital signal processing operations
- Easy to analyze, understand effects in frequency domain
 - E.g. blurring or bandlimiting by convolving with low pass filter



32

Point vs Area Sampling

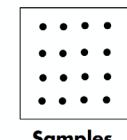


Checkerboard sequence by Tom Duff

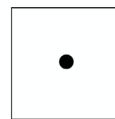
33

Uniform Supersampling

Increasing the number of samples moves each copy of the spectra further apart, thus there is less overlap
This reduces, but does not eliminate, aliasing



$$\text{Pixel} = \sum_s w_s \cdot \text{Sample}_s$$



Pixel

34

Non-uniform Sampling

Uniform sampling

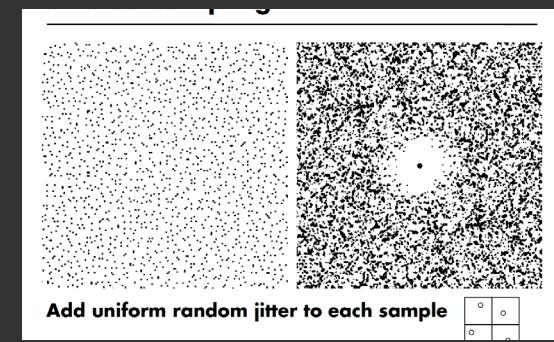
- The spectrum of uniformly spaced samples is also a set of uniformly spaced spikes
- Multiplying the signal by the sampling pattern corresponds to placing a copy of the spectrum at each spike (in freq. space)
- Aliases are coherent, and very noticeable

Non-uniform sampling

- Samples at non-uniform locations have a different spectrum; a single spike plus noise
- Sampling a signal in this way converts aliases into broadband noise
- Noise is incoherent, and much less objectionable
- May cause error in the integral

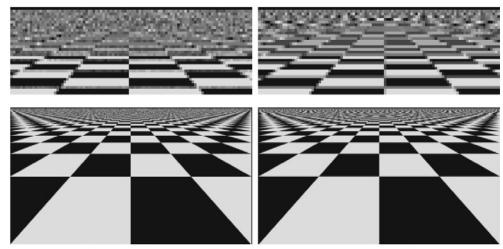
35

Jittered Sampling



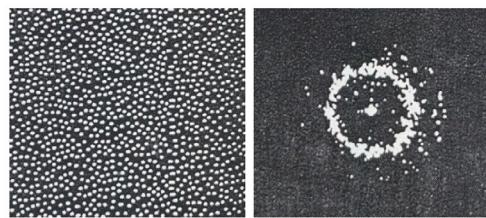
36

Jittered vs Uniform Supersampling



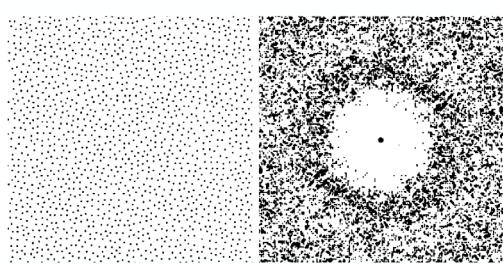
37

Distribution of Extrafoveal Cones



38

Poisson Disk Sampling



39