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Computer Graphics II: Rendering

CSE 168 [Spr 25], Lecture 1: Overview and Ray Tracing

Ravi Ramamoorthi
http://viscomp.ucsd.edu/classes/cse168/sp25/
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Goals
§ Systems:   Write a modern 3D image synthesis 

program (path tracer with importance sampling)

§ Theory:  Mathematical aspects and algorithms 
underlying modern physically-based rendering

§ Topics: Other modern topics like image-based, 
real-time, precomputed, volumetric rendering

§ This course is not about the specifics of 3D 
rendering software like PBRT, Mitsuba etc.  New, 
we optionally encourage OptiX, a real-time 
raytracing API for NVIDIA GPUs
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Instructor

Ravi Ramamoorthi http://www.cs.ucsd.edu/~ravir
§ PhD Stanford, 2002 [with Pat Hanrahan, 2020 Turing Award]                  
“Spherical Harmonic Lighting” widely used in games              
(e.g. Halo series), movies (e.g. Avatar), etc. (Adobe, …)

§ At Columbia 2002-2008, UC Berkeley 2009-2014
§ “Monte Carlo denoising” inspired raytracing offline, real-time
§ At UCSD since Jul 2014: Director, Center for Visual Computing 
§ Awards for research: White House PECASE (2008), 

SIGGRAPH Significant New Researcher (2007), ACM Fellow
§ https://www.youtube.com/watch?v=qpyCXqXGe7I
§ Computer Graphics online MOOC (CSE 167x) finalist for two 

edX Prizes.  Will use CSE 168 MOOC on edX edge as a 
feedback system
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Course Staff

§ Ravi Ramamoorthi, ravir@cs.ucsd.edu

§ Teaching Assistants:  
§ Nithin Raghavan [n2raghavan@ucsd.edu]
§ Please see website (and piazza) for office hours etc.
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Rendering: 1960s (visibility)
§ Roberts (1963), Appel (1967) - hidden-line algorithms
§ Warnock (1969), Watkins (1970) - hidden-surface 
§ Sutherland (1974) - visibility = sorting

Images from FvDFH, Pixar’s Shutterbug
Slide ideas for history of Rendering  courtesy Marc Levoy
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1970s - raster graphics
§ Gouraud (1971) - diffuse lighting, Phong (1974) - specular lighting
§ Blinn (1974) - curved surfaces, texture
§ Catmull (1974) - Z-buffer algorithm (2020 Turing Award)

Rendering: 1970s (lighting)

6
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Rendering (1980s, 90s: Global Illumination) 

early 1980s - global illumination 
§ Whitted (1980) - ray tracing
§ Goral, Torrance et al. (1984) radiosity
§ Kajiya (1986) - the rendering equation, path tracing 

(this is what this course is about, modern rendering)

7

Why Study Computer Graphics Rendering?
§ Applications (Movies, Games, Digital Advertising, 

Lighting Simulation, Digital Humans, Virtual Reality)

§ Fundamental Intellectual Challenges 
§ Create photorealistic virtual world
§ Understand physics and computation of light transport
§ Physically-based rendering has replaced ad-hoc 

approaches in industry (offline ~ 2011, real-time ~2018)

§ Beautiful Imagery: Realistic Computer Graphics
§ 2020 Turing Award given for CGI in Filmmaking

§ Assume taken CSE 167 or equivalent (+done well)
§ This is a challenging course, work starts immediately
§ (First 2 weeks on raytracing may be review for some)
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Image Synthesis Examples

Collage from 2007
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From UCB CS 294 16 years ago

Daniel Ritchie and Lita Cho
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CSE 168 Contest 2007: Butterfly 
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CSE 168 Spring 2020

12
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CSE 168 Spring 2021
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Mies House:  Swimming Pool
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Logistics
§ Website  https://viscomp.ucsd.edu/classes/cse168/sp25/168.html  has 

most of the information (look at it carefully) 

§ We will be leveraging full MOOC infrastructure (use private SPOC)
§ Please join course course on edX edge: DEMO
§ Compulsory for most assignments, feedback systems
§ Must still submit “official” CSE 168 assignment (see website)
§ Please do ask us if you are confused; we are here to help
§ No required texts; optional PBRT book, Digital Image Synthesis
§ Office hours: after class (Tu/Thu 11-12) in CSE 4118

§ Course newsgroup on Piazza, or can use edX edge directly 

§ Website for late, collaboration policy (groups of 2), etc

§ Do try to attend class sessions (and discussions, keep assigned section)

§ Questions? 
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This is a Modernized Course
§ Teach Modern Physically-Based Rendering and Path 

Tracing, as used in industry (Prof. consulted with Pixar on 
change to physically-based shading, importance sampling 
in 2011, written many key papers; consults NVIDIA)

§ Emphasis on step-by-step development, get it right (lots of 
subtle math, compare to reference solutions)

§ Focus on offline but discuss real-time, image-based, PRT

§ Homework starts right away, due in 2 weeks
§ New developments: NVIDIA OptiX ray-tracing API like 

OpenGL, since 2018 RTX cards 10G rays/second Video
§ Encourage (but optional) use of OptiX.  If you use this, 

setup yourself but basic skeleton provided.  Or really slow.
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UCSD Online Overview Video
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Innovation: Feedback Servers
§ Feedback/Grading servers for homeworks 1-4

§ Submit images, compare to original
§ Program generates difference images, report url
§ Can get feedback multiple times; submit final url
§ All run on edX edge (also have alternative standalone)

§ “Feedback” not necessarily grading
§ Can run extra test cases, look at code, grade fairly
§ But use of feedback servers/edX edge is mandatory
§ Note for this course; unlike 167 results not 

deterministic, will give information re noise/variance
§ Can use any laptop/desktop, do it offline or in OptiX

§ Will test out with HW 1 images

18
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Demo of edX edge, Feedbacks
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Workload
§ Lots of fun, rewarding but may involve significant work

§ Previous reviews: “Undergraduate in name only”  ”Most time 
consuming course at UCSD”

§ 5 programming projects; almost all are time-consuming.  
Can be done in groups of two.  START EARLY !!

§ Graded entirely on programming, weights on 168 website 
§ Writeups on 168 website for assignments really good, look at them

§ Prerequisites: CSE 167, did well, enjoyed it

§ First homework last assignment in my CSE 167
§ Little bit of sink or swim to continue in course (but we will also 

provide OptiX, embree references after assignment is due)
§ But not everyone has done a raytracer before, some additional 

requirements for those who have already done one

§ Should be a difficult  but fun and rewarding course
20

Quick Inclusion Note

Since I do occasionally get asked this question:

§ You are welcome to take this course if color-blind
§ Let me know if I create too many red-green metamers
§ Some of the best-known computer graphics 

researchers have been color-blind (ask re some stories)

§ And for most other vision issues
§ We’ve even had computer graphics award winners who 

have been extremely nearsighted (legally blind)

21

CSE 168 is only a first step

§ If you enjoy CSE 168 and do well: 

§ CSE 165 (VR course; Schulze)

§ Next winter: 169 (Animation)

§ Graduate: CSE 272, 274 (Topics), 273, many 291s
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To Do 
§ Look at website

§ Various policies for course.  E-mail if confused.

§ Sign up for edX edge, Piazza, etc. 

§ Skim assignments if you want.  All are ready

§ Assignment 1, Due Apr 14 (see website). 

§ Any questions?

§ Start now with raytracing lecture
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Effects needed for Realism

§ (Soft) Shadows

§ Reflections (Mirrors and Glossy)

§ Transparency (Water, Glass)

§ Interreflections (Color Bleeding)

§ Complex Illumination (Natural, Area Light)

§ Realistic Materials (Velvet, Paints, Glass)

§ And many more

24
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Image courtesy Paul Heckbert 1983
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Ray Tracing

§ Different Approach to Image Synthesis as 
compared to Hardware pipeline (OpenGL)

§ Pixel by Pixel instead of Object by Object

§ Easy to compute shadows/transparency/etc
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Outline
§ History

§ Basic Ray Casting (instead of rasterization)
§ Comparison to hardware scan conversion

§ Shadows / Reflections (core algorithm)

§ Optimizations

§ Current Research
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Ray Tracing: History

§ Appel 68

§ Whitted 80 [recursive ray tracing] 
§ Landmark in computer graphics

§ Lots of work on various geometric primitives

§ Lots of work on accelerations
§ Current Research

§ Real-Time raytracing (historically, slow technique)
§ Ray tracing architecture

28

Ray Tracing History

29

Ray Tracing History

30
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From SIGGRAPH 18

Real Photo: Instructor and Turner Whitted at SIGGRAPH 18
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Outline

§ History

§ Basic Ray Casting (instead of rasterization)
§ Comparison to hardware scan conversion

§ Shadows / Reflections (core algorithm)

§ Optimizations

§ Current Research
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Ray Casting

Produce same images as with OpenGL
§ Visibility per pixel instead of Z-buffer
§ Find nearest object by shooting rays into scene
§ Shade it as in standard OpenGL
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Ray Casting

Virtual Viewpoint

Virtual Screen Objects

Ray misses all objects: Pixel colored blackRay intersects object: shade using color, lights, materialsMultiple intersections: Use closest one (as does OpenGL)
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Comparison to hardware scan-line

§ Per-pixel evaluation, per-pixel rays (not scan-convert 
each object).  On face of it, costly

§ But good for walkthroughs of extremely large models 
(amortize preprocessing, low complexity)

§ More complex shading, lighting effects possible
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Outline in Code
Image Raytrace (Camera cam, Scene scene, int width, int height)
{
 Image image = new Image (width, height) ;
 for (int i = 0 ; i < height ; i++) 
  for (int j = 0 ; j < width ; j++) {
   Ray ray = RayThruPixel (cam, i, j) ;
   Intersection hit = Intersect (ray, scene) ;
   image[i][j] = FindColor (hit) ;
   }
 return image ;
}

36
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Finding Ray Direction

§ Goal is to find ray direction for given pixel i and j

§ Many ways to approach problem
§ Objects in world coord, find dirn of each ray (we do this)
§ Camera in canonical frame, transform objects (OpenGL)

§ Basic idea
§ Ray has origin (camera center) and direction 
§ Find direction given camera params and i and j

§ Camera params as in gluLookAt
§ Lookfrom[3], LookAt[3], up[3], fov

37

Similar to gluLookAt derivation
§ gluLookAt(eyex, eyey, eyez, centerx, centery, centerz, upx, 

upy, upz)
§ Camera at eye, looking at center, with up direction being up

Eye

Up vector

Center

From 167 lecture on deriving gluLookAt

38

Constructing a coordinate frame?

We want to associate w with a, and v with b
§ But a and b are neither orthogonal nor unit norm
§ And we also need to find u

 
u = b ×w

b ×w

 v = w × u

 
w = a

a

From 167 basic math lecture - Vectors: Orthonormal Basis Frames
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Camera coordinate frame

 

§ We want to position camera at origin, looking down –Z dirn

§ Hence, vector a is given by eye – center
§ The vector b is simply the up vector

 
u = b ×w

b ×w  v = w × u

Eye

Up vector

Center

 
w = a

a
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Canonical viewing geometry

-w αu

βv

  
α = tan fovx

2
⎛
⎝⎜

⎞
⎠⎟
× j − (width / 2)

width / 2
⎛
⎝⎜

⎞
⎠⎟

β = tan fovy
2

⎛
⎝⎜

⎞
⎠⎟
× (height / 2)− i

height / 2
⎛
⎝⎜

⎞
⎠⎟

 
ray = eye + t αu + βv −w

αu + βv −w

41

Outline in Code
Image Raytrace (Camera cam, Scene scene, int width, int height)
{
 Image image = new Image (width, height) ;
 for (int i = 0 ; i < height ; i++) 
  for (int j = 0 ; j < width ; j++) {
   Ray ray = RayThruPixel (cam, i, j) ;
   Intersection hit = Intersect (ray, scene) ;
   image[i][j] = FindColor (hit) ;
   }
 return image ;
}

42
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Ray/Object Intersections

§ Heart of Ray Tracer
§ One of the main initial research areas
§ Optimized routines for wide variety of primitives

§ Various types of info
§ Shadow rays: Intersection/No Intersection
§ Primary rays: Point of intersection, material, normals
§ Texture coordinates

§ Work out examples
§ Triangle, sphere, polygon, general implicit surface

43

Ray-Sphere Intersection

   

ray ≡

P =


P0 +


P1t

sphere ≡ (

P −

C) i (


P −

C)− r 2 = 0

C

P0
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Ray-Sphere Intersection

   

ray ≡

P =


P0 +


P1t

sphere ≡ (

P −

C) i (


P −

C)− r 2 = 0

Substitute

   

ray ≡

P =


P0 +


P1t

sphere ≡ (

P0 +


P1t −


C) i (


P0 +


P1t −


C)− r 2 = 0

Simplify

   t
2(

P1 i

P1)+ 2t


P1 i (


P0 −


C)+ (


P0 −


C) i (


P0 −


C)− r 2 = 0
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Ray-Sphere Intersection

   t
2(

P1 i

P1)+ 2t


P1 i (


P0 −


C)+ (


P0 −


C) i (


P0 −


C)− r 2 = 0

Solve quadratic equations for t

§ 2 real positive roots: pick smaller root

§ Both roots same: tangent to sphere

§ One positive, one negative root: ray                                    
origin inside sphere (pick + root)

§ Complex roots: no intersection (check                               
discriminant of equation first)
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Ray-Sphere Intersection

§ Intersection point:  

§ Normal (for sphere, this is same as coordinates 
in sphere frame of reference, useful other tasks) 

   ray ≡

P =


P0 +


P1t

  
normal =


P −

C


P −

C
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Ray-Triangle Intersection

§ One approach: Ray-Plane intersection, then 
check if inside triangle

§ Plane equation:  
A

B

C

  
n = (C − A)× (B − A)

(C − A)× (B − A)

   plane ≡

P i

n −

A i

n = 0

48
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Ray-Triangle Intersection

§ One approach: Ray-Plane intersection, then 
check if inside triangle

§ Plane equation:  

§ Combine with ray equation: 

A
B

C

  
n = (C − A)× (B − A)

(C − A)× (B − A)

   plane ≡

P i

n −

A i

n = 0

   

ray ≡

P =


P0 +


P1t

(

P0 +


P1t) i


n =

A i

n    

t =

A i

n −

P0 i

n

P1 i

n
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Ray inside Triangle
§ Once intersect with plane, still need to find if in 

triangle

§ Many possibilities for triangles, general polygons 
(point in polygon tests)

§ We find parametrically [barycentric coordinates].  Also 
useful for other applications (texture mapping)

A
B

C

P
α β

γ   

P = αA+ βB + γC
α ≥ 0,β ≥ 0,γ ≥ 0
α + β + γ = 1
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Ray inside Triangle

A
B

C

P
α β

γ

  

P = αA+ βB + γC
α ≥ 0,β ≥ 0,γ ≥ 0
α + β + γ = 1

  P − A = β(B − A)+ γ (C − A)

 

0 ≤ β ≤1 , 0 ≤ γ ≤1
β + γ ≤1
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Other primitives

§ Much early work in ray tracing focused on ray-
primitive intersection tests

§ Cones, cylinders, ellipsoids

§ Boxes (especially useful for bounding boxes)

§ General planar polygons

§ Many more

§ Consult chapter in Glassner (handed out) for 
more details and possible extra credit
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Ray Scene Intersection

53

Transformed Objects

§ E.g. transform sphere into ellipsoid

§ Could develop routine to trace ellipsoid 
(compute parameters after transformation)

§ May be useful for triangles, since triangle after 
transformation is still a triangle in any case

§ But can also use original optimized routines

54
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Ray-Tracing Transformed Objects

We have an optimized ray-sphere test
§ But we want to ray trace an ellipsoid…

Solution: Ellipsoid transforms sphere
§ Apply inverse transform to ray, use ray-sphere
§ Allows for instancing (traffic jam of cars)
§ Same idea for other primitives 
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Transformed Objects

§ Consider a general 4x4 transform M
§ Will need to implement matrix stacks like in OpenGL

§ Apply inverse transform M-1 to ray
§ Locations stored and transform in homogeneous 

coordinates
§ Vectors (ray directions) have homogeneous coordinate 

set to 0 [so there is no action because of translations]

§ Do standard ray-surface intersection as modified
§ Transform intersection back to actual coordinates

§ Intersection point p transforms as Mp
§ Distance to intersection if used may need recalculation 
§ Normals n transform as M-tn.  Do all this before lighting

56

Outline

§ History

§ Basic Ray Casting (instead of rasterization)
§ Comparison to hardware scan conversion

§ Shadows / Reflections (core algorithm)

§ Optimizations

§ Current Research
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Shadows

Virtual Viewpoint

Virtual Screen Objects

Light Source

Shadow ray to light is unblocked: object visibleShadow ray to light is blocked: object in shadow

58

Shadows: Numerical Issues
•  Numerical inaccuracy may cause intersection to be 
    below surface  (effect exaggerated in figure)

•  Causing surface to incorrectly shadow itself
•  Move a little towards light before shooting shadow ray
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Outline in Code
Image Raytrace (Camera cam, Scene scene, int width, int height)
{
 Image image = new Image (width, height) ;
 for (int i = 0 ; i < height ; i++) 
  for (int j = 0 ; j < width ; j++) {
   Ray ray = RayThruPixel (cam, i, j) ;
   Intersection hit = Intersect (ray, scene) ;
   image[i][j] = FindColor (hit) ;
   }
 return image ;
}

60
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Lighting Model

§ Similar to OpenGL 

§ Lighting model parameters (global)
§ Ambient r g b 
§ Attenuation const linear quadratic

§ Per light model parameters
§ Directional light (direction, RGB parameters)
§ Point light (location, RGB parameters)

  
L =

L0

const + lin* d + quad * d 2

61

Material Model

§ Diffuse reflectance (r g b)

§ Specular reflectance (r g b)

§ Shininess s 

§ Emission (r g b)

§ All as in OpenGL
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Shading Model

§ Global ambient term, emission from material

§ For each light, diffuse specular terms

§ Note visibility/shadowing for each light (not in OpenGL)

§ Evaluated per pixel per light (not per vertex)

   
I = Ka +Ke + Vi

i=1

n

∑ Li (Kd max (li i n,0)+Ks(max(hi i n,0))s )
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Mirror Reflections/Refractions

Virtual Viewpoint

Virtual Screen Objects
Generate reflected ray in mirror direction, 
Get reflections and refractions of objects

64

Recursive Ray Tracing

For each pixel
§ Trace Primary Eye Ray, find intersection

§ Trace Secondary Shadow Ray(s) to all light(s)
§ Color  = Visible ? Illumination Model : 0 ;

§ Trace Reflected Ray
§ Color += reflectivity * Color of reflected ray
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Recursive Shading Model

§ Highlighted terms are recursive specularities [mirror 
reflections] and transmission (latter is extra credit)

§ Trace secondary rays for mirror reflections and 
refractions, include contribution in lighting model

§ GetColor calls RayTrace recursively (the I values in 
equation above of secondary rays are obtained by 
recursive calls)

   
I = Ka +Ke + Vi

i=1

n

∑ Li (Kd max (li i n,0)+Ks(max(hi i n,0))s )+KsIR +KTIT

66
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Problems with Recursion

§ Reflection rays may be traced forever

§ Generally, set maximum recursion depth

§ Same for transmitted rays (take refraction into 
account)

67

Turner Whitted 1980

68

Effects needed for Realism
• (Soft) Shadows
• Reflections (Mirrors and Glossy)
• Transparency (Water, Glass)
• Interreflections (Color Bleeding)
• Complex Illumination (Natural, Area Light)
• Realistic Materials (Velvet, Paints, Glass)

Discussed in this lecture
Not discussed but possible with distribution ray tracing 
Hard (but not impossible) with ray tracing; radiosity methods 
All are possible with path tracing developed in this course
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Some basic add ons

§ Area light sources and soft shadows: break into 
grid of n x n point lights
§ Use jittering: Randomize direction of shadow ray 

within small box for given light source direction
§ Jittering also useful for antialiasing shadows when 

shooting primary rays 

§ More complex reflectance models
§ Simply update shading model
§ But at present, we can handle only mirror global 

illumination calculations

§ Some of these required for those who have 
already done a raytracer (167 with Chern or me)
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Outline

§ History

§ Basic Ray Casting (instead of rasterization)
§ Comparison to hardware scan conversion

§ Shadows / Reflections (core algorithm)

§ Optimizations

§ Current Research
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Acceleration

Testing each object for each ray is slow
§ Fewer Rays

Adaptive sampling, depth control
§ Generalized Rays

Beam tracing, cone tracing, pencil tracing etc.
§ Faster Intersections

§ Optimized Ray-Object Intersections
§ Fewer Intersections

72



13

Acceleration Structures

Bounding boxes (possibly hierarchical)
 If no intersection bounding box, needn’t check objects

Bounding Box

Ray

Spatial Hierarchies (Oct-trees, kd trees, BSP trees)

73

Ray Tracing Acceleration Structures

§ Bounding Volume Hierarchies (BVH)

§ Uniform Spatial Subdivision (Grids)

§ Binary Space Partitioning (BSP Trees)
§ Axis-aligned often for ray tracing: kd-trees

§ Conceptually simple, implementation a bit tricky
§ Lecture relatively high level: Start early
§ Remember that acceleration a small part of grade
§ But will struggle in future if developing in software

74

Bounding Volume Hierarchies 1

75

Bounding Volume Hierarchies 2

76

Bounding Volume Hierarchies 3

77

Acceleration Structures: Grids

78
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Acceleration and Regular Grids

§ Simplest acceleration, for example 5x5x5 grid

§ For each grid cell, store overlapping triangles

§ March ray along grid (need to be careful with 
this), test against each triangle in grid cell

§ More sophisticated: kd-tree, oct-tree bsp-tree

§ Or use (hierarchical) bounding boxes

§ Try to implement some acceleration in HW 

79

Note on Optix, Code Reuse
§ No Copying Code previous students, solutions, or any 

online resources
§ AI agents like chatGPT may be used only as a search engine for 

example for explaining the way specific commands are used, but 
you should not copy code from them. 

§ No posting code online including to github

§ Some students felt skeleton only for OptiX unfair
§ And in spring 20 tried copying to compensate.  Bad!!

§ Optix skeleton only Optix setup, no raytracing
§ Because writing from scratch in new language is hard
§ Acceleration structures are built-in, can use
§ Still likely harder option, because of learning curve 

(but great performance for course)
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Uniform Grid: Problems

81

Octree

82

Octree traversal

83

Math of 2D Bounding Box Test

§ Can you find a t in range

  txmax

  txmin

  
ty min

  
ty max

  

t > 0
txmin ≤ t ≤ txmax

ty min ≤ t ≤ ty max

No intersection if x and y ranges don’t overlap

  txmin   txmax   
ty min   

ty max

  

if txmin > ty max ORty min > txmax

returnfalse;
else

returntrue;

84
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Bounding Box Test

§ Ray-Intersection is simple coordinate check 

§ Intricacies with test, see Shirley book 

§ Hierarchical Bounding Boxes 

Ray

85

Hierarchical Bounding Box Test

§ If ray hits root box
§ Intersect left subtree
§ Intersect right subtree
§ Merge intersections (find closest one)

§ Standard hierarchical traversal 
§ But caveat, since bounding boxes may overlap

§ At leaf nodes, must intersect objects

86

Creating Bounding Volume Hierarchy

function bvh-node::create (object array A, int AXIS)
N = A.length() ; 
if (N == 1) {left = A[0]; right = NULL; bbox = bound(A[0]);}
else if (N == 2) {

left = A[0] ; right = A[1] ;
bbox = combine(bound(A[0]),bound(A[1])) ;

else
Find midpoint m of bounding box of A along AXIS
Partition A into lists of size k and N-k around m
left = new bvh-node (A[0…k],(AXIS+1) mod 3) ; 
right = new bvh-node(A[k+1…N-1],(AXIS+1) mod 3);
bbox = combine (left -> bbox, right -> bbox) ;  

From page 305 of Shirley book
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Area Heuristics

§ Instead of mid-point of bounding box, alternating axes, 
pick the axis and the location to split carefully

§ The algorithm can test several splitting planes (at least 9 
recommended) across x,y,z and chooses best one

§ Area Heuristic: min              considering areas of each 
child box and number of primitives contained in each

§ Longer for construction but better balanced

§ Ideally speeds up raytracing (in Optix BVH built in)

§ (Optional, but if interested read up on Surface Area 
Heuristic [SAH] and similar methods.  Also see fast 
updates for animations, dynamic scenes)

  a1n1 + a2n2

88

Uniform Spatial Subdivision

§ Different idea: Divide space rather than objects

§ In BVH, each object is in one of two sibling nodes
§ A point in space may be inside both nodes

§ In spatial subdivision, each space point in one node
§ But object may lie in multiple spatial nodes

§ Simplest is uniform grid (have seen this already)

§ Challenge is keeping all objects within cell

§ And in traversing the grid

89

Traversal of Grid High Level

§ Next Intersect Pt?

§ Irreg. samp. pattern?

§ But regular in planes

§ Fast algo. possible

§ (more on board)

90
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BSP Trees

§ Used for visibility and ray tracing
§ Book considers only axis-aligned splits for ray tracing
§ Sometimes called kd-tree for axis aligned

§ Split space (binary space partition) along planes

§ Fast queries and back-to-front (painter’s) traversal

§ Construction is conceptually simple
§ Select a plane as root of the sub-tree
§ Split into two children along this root
§ Random polygon for splitting plane (may need to split 

polygons that intersect it)

BSP slides courtesy Prof. O’Brien

91

Initial State

92

First Split

93

Second Split

94

Third Split

95

Fourth Split

96
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Final BSP Tree

97

BSP Trees Cont’’d

§ Continue splitting until leaf nodes 

§ Visibility traversal in order
§ Child one 
§ Root
§ Child two 

§ Child one chosen based on viewpoint
§ Same side of sub-tree as viewpoint

§ BSP tree built once, used for all viewpoints
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Other Accelerations
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Outline

§ History

§ Basic Ray Casting (instead of rasterization)
§ Comparison to hardware scan conversion

§ Shadows / Reflections (core algorithm)

§ Optimizations

§ Current Research

100
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Interactive Raytracing

§ Ray tracing historically slow

§ Now viable alternative for complex scenes 
§ Key is sublinear complexity with acceleration; 

need not process all triangles in scene

§ Allows many effects hard in hardware
§ Today graphics hardware and software (NVIDIA 

Optix 6, RTX chips 10G+ rays per second).Video
§ Tiger Demo (NVIDIA; see slide)

102



18

Today: Real-Time Denoising at 1spp

NVIDIA Tiger Demo 2021
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Raytracing on Graphics Hardware

§ Modern Programmable Hardware general 
streaming architecture

§ Can map various elements of ray tracing

§ Kernels like eye rays, intersect etc. 

§ In vertex or fragment programs

§ Convergence between hardware, ray tracing

[Purcell et al. 2002, 2003]

http://graphics.stanford.edu/papers/photongfx
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