CSE 168: Assignment 5—Final Project

Ravi Ramamoorthi

The final project is a chance to showcase what you’ve learned in the course, to develop a project of your
choice. We provide some options here, both well-described project options and less specified ones. However,
note that you can also propose a topic of your choosing, with the instructor’s approval. The default option
is to extend your path tracer in a substantial way. Some of the more free-form options below are deliberately
under-specified, to give some flexibility, and to allow you to use your creativity.

As in previous assignments, the submission is to be done by creating a website, including full documen-
tation and example images (or a PDF). For the conventional rendering-based projects, you will likely have
a “hero” image, which best showcases your method, and you should display this prominently. However, it is
also important to have a writeup describing your method and showcasing intermediate images. If you do a
real-time project, please also include links to videos of the system running (if a real-time application). You
should do this project in groups of two, but as before, this is not strictly required. As always, please submit
on Canvas (both partners must submit, noting the name of the other), uploading the link to your website (or
PDF), and a zip file containing your source code and executables. As usual, only if Canvas is not working,
e-mail the instructor/TA with a link to the website (and zip file of source code and executables) to submit
the assignment. As usual, please do not post source code publicly, including to public github repositories.
Please also note that this assignment is completely specified in this PDF and not available on UCSD Online.

Finally, please note that you will be submitting a milestone which must include an approximately 1 page
writeup, with at least one image to showcase that your method has preliminary results, and that you have
started working (please do START EARLY, including thinking about the project even before you complete
all the earlier assignments). Please also include at least a paragraph discussion of next steps and what you
intend to implement. We will make the milestone submission separately available as a new assignment within
the Canvas submission system. We provide several possible project ideas below; please note that you need
to do only one of them.

1 “Rendering Competition” Style Project

Historically, CSE 168 has had a rendering competition at the end (originally derived from Stanford’s CS
348b rendering course; you are welcome to look at past iterations of both courses to see some of the possible
projects and options to get a general idea). While the current course is not specifically aimed at a rendering
competition (and the time available for the final project might be less than in previous iterations), this is
still likely the default option for most of you. (Some of this description is taken from these prior courses).

The usual goal is to produce a realistic image of a real object or scene. The desired goal should be chal-
lenging, requiring significant development of more advanced algorithms beyond those already implemented
in homeworks 1-4, and perhaps also modeling of the scene (which can itself be a contribution and should be
documented). Once again, to get a general sense of the possibilities in past projects, please look at previous
iterations (in fact, we have some posters from previous years hanging in the graduate student offices in 4148
and 4150). Please let us know if you have any difficulty finding past examples online.

Some ideas to think about (also relevant to any future work you may do in computer graphics rendering)
are what effect do you want to model? One example would be surfaces with fine geometric details like
fur (check out Prof. Ramamoorthi’s recent papers on fur reflectance for some ideas, and earlier work on
human hair that it references, as well as much older references on fur). Another example may be subsurface
scattering in human skin or even a jade statue (this has won rendering competitions in the past). Perhaps, it
is the iridescent wings of a butterfly, or the scattering of light from wine glasses and liquids. In each of these
cases, it is worth also thinking about the final result, i.e., what is a final unique image that would convey the
results and impress the viewer? Indeed, this has been a common way to think about SIGGRAPH papers



(think about the canonical images in the original ray tracing and rendering equation papers).

Finally, make some effort to see what research has already been done in this area. We can help in pointing
you to appropriate references. Please feel free to discuss your ideas and ask questions as early as possible;
you do not need to wait to finish the other assignments or until the milestone. While you may not have
the time to do an exhaustive literature search, please do make some efforts to read relevant research papers.
Also note that this course project does not require you to come up with an original solution; it is perfectly
acceptable to implement an existing paper (but obviously, the implementation must be your own, not simply
copied from existing code). But it is a good practice to also think about what hasn’t been done and the
best projects may even come up with new ideas and simplifications (but this is not required; implementing
a research paper is more than adequate for the requirements of the course).

We have already discussed some project ideas above. To summarize, a popular one is new types of
reflectance models, for example for hair, fur, skin, cloth, layered materials, fluorescence, dispersion (to render
gemstones) etc. Volumetric light transport is another common example, to render participating media like
mist, smoke or fog, as well as liquids. One could also implement photon mapping to render caustics from a
wine glass or if particularly ambitious, even volumetric photon mapping. Finally, while this course focuses
on light transport, as long as you produce good renderings, you could even focus on other aspects such as the
modeling of complex scenes, physical simulation of liquids or smoke (rendered with volumetric effects) etc.
In general, this project gives you a good license to use your creativity to model a real-world phenomenon
with computer graphics, and produce a striking and beautiful image(s). Please don’t hesitate to speak with
the instructor and TA regarding any questions or discussions. Note that there is no “competition” per se,
and groups will be graded based on their own efforts.

Grading will be based primarily on the technical complexity of the solution and the resulting rendering
system, correctness of implementation and documentation. Some points (and possibly extra credit) will be
given for the most artistic images that best demonstrate the resulting visual effects. Since this is a fairly
open-ended project, grading must necessarily be somewhat subjective.

2 Extending Path Tracer with Modern Algorithms

Another popular project option would be to extend your path tracer with a number of modern algorithms,
getting closer to building a state of the art rendering system. You are probably best off focusing on one
(or two) major extensions, investigated thoroughly, rather than a number of smaller incremental changes,
but the choice is ultimately up to you. As in the previous project, grading will be somewhat subjective,
based on the technical complexity of the chosen extensions and project, the correctness and documentation
of results, and final quality of images. Note that this project is closely related to the previous one, and
indeed, having a nice “hero” image is expected in most cases (so a given project could equally qualify as
a rendering-competition style project), but we list it separately since as noted below, some projects don’t
really involve explicitly modeling a particular appearance phenomenon.

As examples of some extensions, we have already discussed volumetric rendering for participating media,
and subsurface scattering for effects like skin. You could also experiment with modern importance sampling
strategies for lighting and BRDFs, enabling rendering of environment maps and BRDF's more efficiently. One
could implement the wavelet importance sampling or similar paper for sampling the product of lighting and
BRDFs. A more modern approach would be to also implement path guiding (for example Vorba or Muller
papers); this can best be showcased by modeling a scene where most of the indirect lighting corresponds to
a small number of paths. You may also want to consider some form of Metropolis light transport (originally
from Veach 97, but there are many newer and simpler implmentations). Note that importance sampling
techniques can also be applied to volumetric phenomena, on which there have been several recent papers.
Please do speak with the instructor and TA regarding any questions on these projects and references to state
of the art papers.

Another important problem relates to Monte Carlo denoising. This is a great project topic, implementing
one of the recent algorithms for denoising a Monte Carlo renderer from a sparse set of samples. Note that
this project does not strictly require any modeling of new scenes and can in fact be benchmarked on the
existing scenes you have. You may want to look at past CSE 274 versions which have focused exclusively
on sampling and reconstruction in general and Monte Carlo denoising in particular. Obviously, you must
implement your desired algorithm from scratch, rather than simply copying many of the available codes. In



this context, you may also want to consider machine learning-based solutions, such as the recent works by
Chaitanya et al. and Bako et al. (SIGGRAPH 18) or more recent papers from 2019. Please note that if you
do a machine learning-based denoiser, you must train your model yourself and not simply use pre-trained
models or Optix’s implementation.

Please also note that while we are happy to discuss and point you to resources, we cannot commit to
making computational resources or GPUs available for this purpose (do talk to us however, and we may be
able to work something out). Finally, the use of machine learning in light transport simulation is a current
hot topic, and you may want to think of other ways in which you can use machine and deep learning, such
as neural radiance caches, renders of NeRF models and so on (the final well-specified option is a light field
viewer, but you may instead want to implement a modern NeRF method including TensoRF, InstantNGP
or Gaussian Splatting). Note however, that these projects should be based on light transport simulation (or
some of the other topics discussed next) rather than simply for example, image and video synthesis using
GANs without explicitly considering lighting simulation; please speak with us if there is any doubt.

3 Relatively Well-Specified Options

This part of the assignment gives some relatively well-specified (but still flexible) options, related to imple-
menting some of the techniques for real-time and/or image-based rendering. For the real-time parts, you
must provide video to enable grading, either on your website or on YouTube or similar medium.

You need only pick one of the choices, based on your interests and expertise. Since many of these are
close to the research frontier, I am providing as much guidance as possible, but you will need to be proactive
in looking up the original literature and other sources such as online tutorials. No source/skeleton code
is available. If you find online source code, you are welcome to use it as a reference, or to use utility
functions, but obviously not as a core part of the assignment. If in doubt, please ask the instructor for
clarification. Future editions of the course may provide more support, but the point is also to get you to
work independently and communicate your results, given that this is an advanced computer graphics course.

3.1 Precomputed Radiance Transfer and Relighting

Recently, a body of work known as precomputed radiance transfer, or precomputation-based relighting, has
become a popular technique for real-time rendering in varying illumination, and recently also viewpoint for
dynamic scenes. Some variant of this technique is now widely used in movies and games. Good references
are the seminal papers by Sloan, Kautz and Snyder in SIGGRAPH 02, and Ng, Ramamoorthi, Hanrahan in
SIGGRAPH 03. A good historical source, that also surveys some of the previous work in image relighting, is
a survey I wrote on precomputation-based rendering (available on both my website, and on the publisher’s. T
can also give you a spare copy of the book if you ask me quickly enough). In this context, I also encourage you
to read some of the earliest work, such as Nimeroff et al. 94, “Efficient Re-Rendering of Naturally Illuminated
Environments”, EuroGraphics Workshop on Rendering, and Dorsey et al. 95, “Interactive Design of Complex
Time-Depending Lighting”, IEEE Computer Graphics and Applications, 1995.

The basic idea of precomputation-based methods is based on linearity of light transport. You precompute
solutions for different light sources and then linearly combine them in some quick way. Ideally, you would
implement a basic PRT system, at least along the lines of Ng et al. 03, and maybe some of the further work
like Wang et al. 04 or Ng et al. 04. However, this is difficult in the short time available, so I stratify the
various tasks below:

3.1.1 Basic Relighting from a few Point Lights

First, implement a very basic relighting system. Consider a scene with a fixed viewpoint (this is essentially
the approach taken in Ng et al. 03). You can use your (ideally Optix) raytracer (or any other method,
including a publicly available rendering system) to create images from a number of different properly chosen
light source locations. For compatibility with later parts of the assignment, choose (say) 20 or so light source
directions, which are directional lights, These could be uniformly distributed on the sphere, or chosen in
such a way as to create interesting visual effects in your scene. Implement a simple visual system that allows
you to change the intensities (and possibly colors) of these lights and re-renders the scene in real-time. This



is done simply by linearly combining the source images, based on the light source intensities. This system
provides a basic framework for interactive lighting design of images.

Similar to Ng et al. 03, you could also make the computations on vertices of a diffuse mesh, allowing you
to visualize a Lambertian model in simple OpenGL, where you can also change viewpoint. Do this last part
(vertex computation and meshes) before the other components, only if it is relatively straightforward.

3.1.2 Image-Based Lighting

The next step is to consider image-based environment lighting, as for example in Sloan et al. 02 and Ng
et al. 03. Environment maps are now very common, and high-dynamic range lighting environments are
available from a number of websites, like Paul Debevec’s. You could also try painting your own. A common
representation is a cubemap, where the sphere is projected onto 6 faces of a cube that are unwrapped.

Ng et al. 03 used cubemaps with resolutions up to 6 x 64 x 64. However, the larger resolutions will make
your system harder to build, and so I recommend starting small, with say resolutions of 6 x 16 x 16, and
perhaps images of size 256 x 256. Actually, if you implemented the vertex-based method above, you could try
very small geometric meshes of about 10,000 triangles. Note that a cubemap resolution of 6 x 16 x 16 is still
1536 images and the rendering precomputation could be slow. You may want to turn off global illumination
in your ray tracer, and just do direct lighting, that could be much faster (it effectively reduces to visibility
computations by tracing rays). If speed is still a concern, you could also try implementing the hardware
rasterization approach in Ng et al. 03, where you go to each vertex or pixel, and rasterize the model to get
visibility over the cubemap.

You now have a full light transport matrix. Assuming an image resolution of 256 x 256 and light resolution
of 1536, this is about 100 million entities. This is still small enough that a floating point version could fit in
main memory, but it quickly becomes intractable as you scale up cubemap and image resolution. You can
see what rendering speeds you get without compression. It will likely not be real-time, but may be a few
seconds for modern computers with low resolutions.

Note that you will likely want to implement something to manipulate the environment map lighting,
most commonly by rotation, but you could also simply translate it along the cubemap. This will allow new
lightings to be created, which shows the power of the method for relighting.

3.1.3 Wavelet and other Transforms

Your next task is to wavelet transform the transport matrix along its rows (i.e. along the lighting cubemap)
as in Ng et al. 03. You can use the simple Haar wavelet for this purpose. You can also wavelet transform
the lighting and choose only the first 100 or 200 terms, making the transport-lighting dot product tractable.
See if you can achieve real-time framerates with this, and do some experimentation. Be careful to program
the inner loop in a memory-coherent way for maximal efficiency. Having got this far, you can play with
increasing resolutions, and using dithering/quantization, as well as truncating elements of the transport
matrix to 0 as in Ng et al. 03.

If you complete the assignment so far, you may also want to try using low-order spherical harmonics
instead, and compare wavelets and spherical harmonics. See if you can reproduce the types of graphs and
comparisons made in Ng et al. 03. More ambitious groups may want to implement some of the methods in
Sloan et al. 02, to produce real-time demos of the type one would want in video games. Even more ambitious
extra credits are to do all-frequency lighting and view manipulation along the lines of Wang et al. In any
event, if you go beyond the base requirements of the assignment, extra credit will be available. If you are
really ambitious see my recent papers on spherical harmonics for area lights.

Note that a key component of this assignment is the final demo of relighting with complex shadowing
and/or global illumination effects. Noting which of the stages above you were able to complete, and the
quality of the final demo will be important factors in grading.

3.1.4 Grading

The grading scheme is subject to change, but tentatively assigns 7 points for the writeup and video, 12
points for basic relighting, 15 for environment maps, 10 for wavelets, and 6 points for robustness and other
issues (assuming a total of 50 points, this will be scaled to 125).



3.2 Basic High Quality Rendering

The purpose of this project is to develop an understanding of the basics of modern high quality rendering.
Towards this end, you will implement a basic program, likely using GLSL shaders, and including environment
and shadow mapping. The instructions in this assignment are relatively brief; perhaps more detailed step-by-
steps will be provided in a future instantiation of the course. The best source of more detailed instructions
is probably online tutorials and user manuals (such as for GLSL). Note that you can probably find source
code online to implement many of the core components of this (or any other) project. While you may look
at that as a reference, do not directly copy it (when in doubt if a code segment is a core component or a
utility aspect you can use, please ask). It would also be interesting to do this assignment using the OptiX
real-time raytracer, although you are more on your own for support. (If you did do the 168 assignments in
Optix, you should really consider just doing this project in OptiX directly).

3.2.1 GLSL Shaders

Modern graphics cards include the capability of developing vertex and fragment shaders, that provide control
over various aspects of the graphics pipeline. They are therefore a key element to implement various high
quality rendering effects. Shader development has undergone several iterations, including Cg and HLSL.
However, they are now a core component of OpenGL 2.0, 3.0 etc. documented in the OpenGL red book with
a GLSL (GL shading language) available. Your first task is to get basic GLSL programmable shaders working,
based on the documentation in the red book, the GLSL manual, and other online sources. Demonstrate a
simple basic program that uses shaders to do something interesting, that may be more difficult or impossible
in the standard OpenGL pipeline. If you are working in OptiX, you can similarly specify shading at hit
points in the raytracer. Show that you can create some interesting non-standard effects, or at least new
reflectance models beyond what you have implemented in earlier assignments.

3.2.2 Shadow Mapping

Next, you will implement a common shadowing technique known as shadow mapping. The scene is first ren-
dered from the light source, with depth values stored. There are special OpenGL GL_DEPTH_COMPONENT
specifications for these depths. This scene is then rendered from the camera, with depth values projected
back to the light and compared to determine shadowing. The exact details of the technique can be found
in many textbooks and online tutorials. The key issues are to set up the projection matrices correctly to
project back to the light, and execute the right programs. You can implement this with GLSL shaders. Try
to implement percentage-closer filtering for antialiasing (the basic idea dates back to Reeves Salesin Cook
from SIGGRAPH 87). By applying this properly, you can also simulate penumbrae from soft shadows.

If you are developing in OptiX, you have likely already done soft shadows in earlier assignments. As
such, you need to demonstrate another visual effect (beyond the two add-ons) in lieu of shadow mapping.
Examples might be an effect like refraction, or perhaps even some kind of volumetric effect. Or you need to
do an additional add-on.

3.2.3 Environment Mapping

The other technique you need to implement is environment mapping. This gives the effects of mirror
reflections from image-based lighting. For each point on the surface, you look up the surface normal and
view direction, reflect the view about the normal, and use that to index into the lighting. The indexing is
simply a texture lookup into the environment cube map. This should be relatively straightforward to program
using GLSL shaders, although there are also techniques to do so using standard OpenGL. With shadow and
environment mapping, you should be able to make nice images with complex lighting and shadows. Note
that environment-mapped shadows are a challenging problem, so you may want to pick the brightest lights
in the environment for shadow mapping. If you are developing in OptiX, you will want to similarly use your
creativity, and see best how to combine shadow and environment mapping.

3.2.4 Add-Ons

Besides the basic requirements above, you need to implement at least two add-ons (use your imagination).
Since this project is somewhat easier than the others, we reserve the right to consider the complexity of the



add-ons before providing full credit. The most natural example could be in environment mapping, where
besides mirror reflections, you consider diffuse and Phong Shading. You may also want to look at Heidrich
et al. SIGGRAPH 99, “Realistic Hardware-Accelerated Shading and Lighting” for some ideas on interesting
things you could do (many of the methods there could be implemented more simply than in the paper, using
programmable shaders).

As described by Heidrich et al., and earlier in Miller and Hoffman, diffuse shading simply involves con-
volving your environment map with the Lambertian shading function (a cosine over the upper hemisphere).
This diffuse map can then be looked up directly using the surface normal. For an easier procedural technique,
read Ramamoorthi and Hanrahan, SIGGRAPH 01, “An Efficient Representation for Irradiance Environment
Maps”. For the specular, you instead convolve with the Phong filter, and look up based on the reflected
direction. More ambitious projects may want to implement general BRDF's, using Cabral et al. 99, “Re-
flection Space Image Based Rendering” or Ramamoorthi and Hanrahan 02, “Frequency Space Environment
Map Rendering”. (Note that these ideas may also be relevant to the earlier project if you want to add
environment maps and realistic BRDFs to your path tracer).

With shadow maps, there is wide literature on various enhancements possible, including perspective
shadow maps, adaptive shadow maps and so on. There are also various soft shadow mapping techniques
that can “fake” shadows from an area light. If you are interested, talk to the instructor.

A number of other possibilities for add-ons also exist. In any event, the final goal is a high-quality
real-time rendering demo that shows object(s) with a variety of visual effects being created. Speak to us
regarding any questions or issues with this project.

3.2.5 Grading

The grading scheme is subject to change but tentatively has 13 points for basic real-time rendering (a solid
video and demo is needed), and 10 points each for shadows, environment maps and add-ons. 7 points will
be given for documentation and scene/video selection. (This is out of 50 points, will be scaled to 125).
Please note that all effects must go beyond what you have already implemented in homeworks 1-4; any effect
already demonstrated in homeworks 1-4 (relevant only if you implemented them in OptiX) will not receive
duplicate credit.

3.3 Image-Based Rendering: Light Field Viewer

Image-Based Rendering is an exciting newer area of computer graphics. Instead of rendering synthetic
images from “scratch”, one uses acquired or rendered images as inputs, interpolating between them to
render intermediate views. The recent commercial development of light field cameras and focusing and view
changes after the fact has brought this area to the average consumer; please ask the instructor if you want
to do a project closer to the current state of the art of light field cameras, rather than what is recommended
below.

In this project, you will implement a viewer for one of the first image-based rendering techniques, Light
Field Rendering by Levoy and Hanrahan in SIGGRAPH 96. This paper is very similar to The Lumigraph
by Gortler et al., also in SIGGRAPH 96, but the former paper is conceptually cleaner. The idea is to write
a light field viewer for light field datasets. Useful resources will be the datasets available at the Stanford
graphics lab website (look at both the old and new data), as well as in other places. Note that there are some
issues with the exact format of the Stanford data, and you may need to do some reverse engineering to get
it to work (this was somewhat frustrating for students in the past). You may want to start with synthetic
datasets (see below).

You can also use a raytracer (including your own, PBRT or other online program) to render synthetic
datasets, which can then be more tightly coupled to your viewer. In the initial phase, this may be the
preferred method of choice, since the Stanford lif files may require VQ decompression to be implemented
in order to read. It is easy to simply render images from multiple viewpoints one at a time. Of course,
eventually you will want to use datasets with acquired light field data, captured as actual images. (Note
that rendering images from multiple views as a precomputation is very similar to the multiple light images
that will need to be rendered for the precomputed radiance transfer project. Indeed, similar compression
methods can also be used).



Textual material of interest is the original paper, and the image-based modeling and rendering course
notes from SIGGRAPH over the years. You may also look for a reference at the light field viewers and code
at the Stanford graphics lab website, though of course you cannot copy directly.

3.3.1 Basics

In its simplest 2-plane parameterization form, a “ray” in a light field is given by its intersection on two planes.
Therefore, to render an image, for each ray, one needs to look up the appropriate light field element, based
on intersections of the ray with the two planes. There are of course more effective hardware texture-mapping
based approaches, some of which are discussed in the original papers, that you may want to think about
(but this is not required).

When you find the intersection of the ray with the two planes, make sure to account for if the ray
intersects outside the valid regions or behind the viewer (in these cases, the source light field has no data,
and the pixel is simply set to the background color). Once you find the intersection, experiment with finding
the closest sample, as well as bilinear and quadrilinear interpolation. Which works best?

As a simple basic test, you may want to render your own light fields at low resolution, and compare with
direct hardware rendering of objects, to make sure the basic mechanism is working.

3.3.2 Input Data and Light Field Viewer

Your basic light field viewer will read a source input file and draw the light field. At this time, we don’t
specify a particular file format for the inputs, but you may want to be compatible with common datasets
such as the Stanford light field archive. The elements of the parameters file are:

e Resolution: The first line could have the resolution in u v s t, for example 16 16 256 256.

o Area of light field slice: This should tell you the locations of where the uv and st planes are respectively.
The line could have the form: wv, uv, wv! uvy, wv) uv}, where the superscript 1 stands for the first
corner of the wv plane, and subscripts stand for x,y,z and possibly w homogeneous coordinate. p and ¢
are the corresponding texture coordinates (in the [0, 1] range). You would have a similar line for each
of the 4 corners of the uv plane and then 4 corners of the st plane. For example, a line of the form
—22 —21 00 defines the “bottom left” corner with texture coordinates (0,0) and spatial location

(—2,2,—2). This is similar to the way vertex and texture coordinates are specified in OpenGL

e Data: Finally, the data must be given. This could be in a separate file. It could simply be the raw
uvst data in RGB triples (the size will be the product of resolutions of w,v,s,t times 3).

Finally, you need to implement the viewer. For this purpose, develop some kind of mouse-controlled view
manipulation, such a crystal ball interface. Then, for each pixel, generate a ray as in standard ray-tracing,
except you actually intersect with the light field planes, and use that to look up the color in the light field
data. Finally, you can draw the image on the screen using standard OpenGL (for example, glDrawPixels()).

3.3.3 Add-Ons

You should implement at least one add-on. One simple idea is to extend the single-slab light field to
multiple slabs, so that you have a closed view of the object. Another idea is to implement VQ or another
compression/decompression method (VQ decompression was used in the original light field paper, but some
of the light transport theory for precomputed radiance transfer is also relevant). Another simple test is
to implement various combinations of nearest, bilinear and quadrilinear interpolation, and compare their
relative benefits versus cost. Finally, for the more ambitious, you could use partial geometry like in the
lumigraph paper to improve the quality of the light field interpolation and rendering.

3.3.4 Grading

The tentative grading scheme provides 13 points for a basic working demo (with video), 8 points for good
documentation and scene selection, 10 points each for the viewer and suitable interpolation method, and 10
points for the add-ons. (This is out of 50 points, will be scaled to 125).



