
1

Computer Graphics II: Rendering

CSE 168 [Spr 21], Lecture 8: Indirect Lighting Details
Ravi Ramamoorthi

http://viscomp.ucsd.edu/classes/cse168/sp21

To Do

§  Homework 2 (Direct Lighting) due today!!

§  Homework 3 (Path Tracer, Indirect Lighting) May 3

§  Assignment is on UCSD Online

§  START EARLY

§  This lecture goes through details of indirect lighting,
Monte Carlo path tracing for the assignment

§  Ask re any questions

Indirect Lighting
§  Core of path tracing, global illumination

§  Supports multiple bounces of light, color bleeding

§  General paths, general visual effects

Light Source (0 bounces) Direct Lighting (1 bounce) Indirect Lighting (2 bounces) Indirect Lighting (3 bounces)

Indirect Lighting
§  Core of path tracing, global illumination

§  Supports multiple bounces of light, color bleeding

§  General paths, general visual effects

Full Scene Direct Lighting Indirect Lighting

Indirect Lighting
§  Core of path tracing, global illumination

§  Supports multiple bounces of light, color bleeding

§  General paths, general visual effects

Rendering Equation (Kajiya 86)

Paper introduced rendering equation, path tracing, importance sampling still used today

2

Reflection Equation

 ω i rω

x

(,) (,) (,) (, ,) cosr r e r i i i r iiL x L x L x df xω ω ω ωω ω θ
Ω

= + ∫
Reflected Light
(Output Image)

Emission Incident
Light (from
light source)

BRDF Cosine of
Incident angle

Replace sum with integral

idω

Rendering Equation

iω rω

x

(,) (, ,) c(,) (,) ose r i rr r i ir iL x L xL x f x dω ω ωω θ ωω
Ω

= + ′ −∫
Reflected Light
(Output Image)

Emission Reflected
Light

BRDF Cosine of
Incident angle

idω

Surfaces (interreflection)

dA
x′

UNKNOWN UNKNOWN KNOWN KNOWN KNOWN

i x xω ′−:

Rendering Equation

§  Assignment: slight change in notations

§  Monte Carlo estimator (hemisphere, not area light)
§  Randomly generate sample on hemisphere (total 2π steradians)

§  Not ideal; each Lr call recursively estimated
§  Can lead to exponential growth in samples, termination condition
§  Set fixed depth D = 5 to guarantee termination for now

§  Instead, consider single path without splitting
§  N = 1 after primary visibility or first bounce (all N for first bounce)
§  Actually render N images, average (Single path vs “bushy tree”)

 x ' = t(x,ω i) is the raycasting function to first intersection

Lr (x,ωo) = Le(x,ωo)+

Ω
∫ Lr (t(x,ω i),−ω i)f (x,ω i ,ωo)(n iω i)dω i

Lr (x,ωo) ≈ Le(x,ωo)+ 2π

N k=1

N

∑ Lr (t(x,ω i (k)),−ω i (k))f (x,ω i (k),ωo)(n iω i (k))

Path Construction
§  Single path vs bushy tree

§  Conceptually simplest to render N 1-sample images
§  And then average them

Antialiasing within pixel for “free” (consider pixel having unit
area, jitter ray in that, instead of shooting through midpoint)

Sampling Upper Hemisphere

§  Uniform directional sampling: how to generate
random ray on a hemisphere?

§  Option #1: rejection sampling
§  Generate 3 random numbers (x,y,z), with x,y,z in –1..1
§  If x2+y2+z2 > 1, reject
§  Normalize (x,y,z)
§  If pointing into surface (ray dot n < 0), flip to -ray

Sampling Upper Hemisphere
§  Option #2: inversion method

§  In polar coords, density must be proportional to sin θ
(remember d(solid angle) = sin θ dθ dϕ)

§  Integrate, invert è cos-1

§  Recipe is (start with two random numbers ξ1, ξ2 in 0…1)
§  Generate ϕ in 0..2π ϕ=2πξ2
§  Generate z in 0..1 z=ξ1
§  Let θ = cos-1 z θ=acos(ξ1)
§  (x,y,z) = (sin θ cos ϕ, sin θ sin ϕ, cos θ)

§  Rotate according to surface normal (z goes to normal)
§  Normal is (α,β) with α = acos(nz) and β=atan2(ny,nx)
§  Rotation matrix R = Rz(β)Ry(α) then do R*(x,y,z)

3

Sampling Upper Hemisphere

§  Two random numbers ξ1, ξ2 in 0…1
§  Generate ϕ in 0..2π ϕ=2πξ2
§  Generate z in 0..1 z=ξ1
§  Let θ = cos-1 z θ=acos(ξ1)
§  (x,y,z) = (sin θ cos ϕ, sin θ sin ϕ, cos θ)

§  Rotate according to surface normal (z goes to normal)
§  Normal is (α,β) with α = acos(nz) and β=atan2(ny,nx)
§  Rotation matrix R = Rz(β)Ry(α) then do R*(x,y,z)

R =
cos β −sin β 0
sin β cos β 0

0 0 1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

cosα 0 sinα
0 1 0

−sinα 0 cosα

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
=

cosα cos β −sin β sinα cos β
sin β cosα cosβ sinα sin β
−sinα 0 cosα

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

Or Create Local Coordinate Frame
§  Simpler, may be useful for texture etc.

§  Can use any one of 3 methods (rejection, rotation,
coordinate frame but assignment spec coord. frame)

§  Associate w with normal (+z = n). Need u, v

u = v = w = 1

u iv = v iw = u iw = 0
w = u ×v

p = (p iu)u + (p iv)v + (p iw)w

Create Local Coordinate Frame
§  First, compute u,v,w to create orthonormal frame

§  Vector a is arbitrary (use random or up vector)
§  Be careful when a close to n, use alternative vector

§  Now, compute ray direction ω
§  (x,y,z) are scalar coordinates; u,v,w are vectors above

w = n
n

u = a ×w
a ×w

v = w × u

 ωω = xu+ yv + zw

Assignment so far (checkpoint 1)

§  Sample hemisphere at each bounce
§  Evaluate full MC estimator with N = 1 for each ray
§  Upto depth D = 5. Final ray D = 5 returns emit Le only
§  Most rays will actually be 0 (do not hit light source)
§  Very inefficient, but render this, will improve on it next

1 sample per pixel 64 samples per pixel (may be slow)

4

Separating Direct/Indirect

§  Also called next event estimation (NEE)

§  Already know how to do direct (homework 2)
§  By sampling/integrating area light source
§  But vanilla path tracing previously is very inefficient
§  Chance of hitting the light source is very small

§  So separate direct and indirect
§  Estimate “next event” on light source for direct
§  Focus energies on “hard” indirect light vs “easy” direct

§  Simplest of variance reduction methods
§  Monte Carlo Path tracing always works, is gold standard
§  But challenge is making it fast, removing noise

Separating Direct/Indirect

§  Formally split incident light at a point

§  Reflected light has emission, direct, indirect

§  Emission is easy, and we already know direct

§  Indirect is now evaluated by path tracing

 Li (x,ω i) = Ldir (x,ω i)+ Lind (x,ω i)

 Lr (x,ωo) = Le(x,ωo)+ Ld (x,ωo)+ LI(x,ωo)

Ld (x,ωo) ≈ Le

A
N k=1

N

∑ f (x,ω i (k),ωo) G(x,x'k)V(x,x'k)

LI(x,ωo) =
Ω
∫ Lind (x,ω i)f (x,ω i ,ωo)(n iω i)dω i

≈ 2π
N k=1

N

∑ Lo(t(x,ω i (k)),−ω i (k))f (x,ω i (k),ωo)(n iω i (k))

Separating Direct/Indirect: Notes

§  Note that Lo above = Ld + LI only(not Lr: no emission)

§  Implementation
§  At each intersection in path tracer, execute direct lighting

§  For simplicity, only one (unstratified) ray for each area light
§  Ultimately, we will average many primary samples

§  Add in emission where appropriate (light sources only)
§  Execute indirect lighting above (randomly sample path)
§  To avoid double counting, indirect rays don’t see emission

§  If an indirect ray ever strikes a light source, terminate immediately
§  Without accumulating the light source’s emission

LI(x,ωo) =
Ω
∫ Lind (x,ω i)f (x,ω i ,ωo)(n iω i)dω i

≈ 2π
N k=1

N

∑ Lo(t(x,ω i (k)),−ω i (k))f (x,ω i (k),ωo)(n iω i (k))

Implementation: Corner Cases
§  Emission from first intersected surface (light sources)

should be added, but no emission on subsequent bounces

§  Since next event estimation / direct light effectively extends
path by a bounce, trace indirect ray to depth D – 1

§  Render Cornell box 1 spp, 64 spp D = 5, single unstratified
direct light sample per intersection

1 sample per pixel (no NEE) 1 sample per pixel (with NEE)

5

64 samples per pixel (without NEE) 64 samples per pixel (with NEE)

Russian Roulette
§  Clipping to fixed depth D undesirable

§  Leads to bias, some complex paths need high D
§  Continue ray even when throughput is very small
§  In practice, rays may terminate if exit scene, but this can’t

formally be guaranteed (hall of mirrors, closed box)

§  Russian roulette unbiased at infinite depth
§  Terminate (probabilistically) low throughput paths
§  Increase energy of paths kept alive

Russian Roulette Termination
§  Terminate path with some probability q

§  If terminated, obviously throughput is 0
§  If left alive, multiply (boost) throughput T by 1/(1-q)
§  Create fewer higher-energy paths (e.g. if q = 0.1, 10

equal paths reduces to 9 (expected) each 10/9 energy. If
instead q = 0.9, reduce to 1 path with 10 times energy)

§  Keep total energy constant, unbiased (0*q + (1-q)/(1-q))
§  Probability q controls how aggressive termination

(depends on throughput, can increase variance)

Choosing Probability
§  Choose probability q inversely on throughput

§  Russian Roulette applied (only) in indirect
§  Determine direct (and emission on first bounce) as usual

(no boosting or termination is applied)
§  Then find throughput for ray so far (BRDF, cosine, 2π

terms product each bounce), pick random number in 0…1
§  If number < q terminate (no indirect ray is shot)
§  Otherwise, boost throughput by 1/(1-q), shoot indirect

q = 1−min max Tr ,Tg,Tb(),1()

Russian Roulette Images

D = 5, 16 samples D = infinity, 16 samples

