
1

Computer Graphics II: Rendering

CSE 168 [Spr 21], Lecture 7: Monte Carlo Path Tracing
Ravi Ramamoorthi

http://viscomp.ucsd.edu/classes/cse168/sp21

To Do

§  Homework 2 (direct lighting) due in two days

§  Next assignment path tracing (on UCSD Online).
This lecture covers much of that material

Motivation

§  General solution to rendering and global illumination

§  Suitable for a variety of general scenes

§  Based on Monte Carlo methods

§  Enumerate all paths of light transport

Monte Carlo Path Tracing

Big diffuse light source, 20 minutes

Jensen

Monte Carlo Path Tracing

1000 paths/pixel

Jensen

Monte Carlo Path Tracing

Advantages
§  Any type of geometry (procedural, curved, ...)
§  Any type of BRDF (specular, glossy, diffuse, ...)
§  Samples all types of paths (L(SD)*E)
§  Accuracy controlled at pixel level
§  Low memory consumption
§  Unbiased - error appears as noise in final image

Disadvantages (standard Monte Carlo problems)
§  Slow convergence (square root of number of samples)
§  Noise in final image

2

Monte Carlo Path Tracing

 Integrate radiance
for each pixel
by sampling paths
randomly

Diffuse Surface

Eye

Light

x

Specular
Surface

Pixel

Lo(x,


w) = Le(x,


w)+ fr (x,

Ω
∫


′w ,

w)Li(x,


′w)(

′w •

n)d

w

Simple Monte Carlo Path Tracer

§  Step 1: Choose a ray (u,v,θ,ϕ) [per pixel]; assign weight = 1

§  Step 2: Trace ray to find intersection with nearest surface

§  Step 3: Randomly choose between emitted and reflected light
§  Step 3a: If emitted,

 return weight’ * Le
§  Step 3b: If reflected,

 weight’’ *= reflectance
 Generate ray in random direction
 Go to step 2

Sampling Techniques

 Problem: how do we generate random points/directions
during path tracing and reduce variance?

§  Importance sampling (e.g. by BRDF)
§  Stratified sampling

Surface

Eye

x

Outline

§  Motivation and Basic Idea

§  Implementation of simple path tracer

§  Variance Reduction: Importance sampling

§  Other variance reduction methods

§  Specific 2D sampling techniques

Simplest Monte Carlo Path Tracer
For each pixel, cast n samples and average

§  Choose a ray with p=camera, d=(θ,ϕ) within pixel
§  Pixel color += (1/n) * TracePath(p, d)

TracePath(p, d) returns (r,g,b) [and calls itself recursively]:

§  Trace ray (p, d) to find nearest intersection p’
§  Select with probability (say) 50%:

§  Emitted:
 return 2 * (Lered, Legreen, Leblue) // 2 = 1/(50%)

§  Reflected:
 generate ray in random direction d’
 return 2 * fr(d èd’) * (n�d’) * TracePath(p’, d’)

Simplest Monte Carlo Path Tracer
For each pixel, cast n samples and average over paths

§  Choose a ray with p=camera, d=(θ,ϕ) within pixel
§  Pixel color += (1/n) * TracePath(p, d)

TracePath(p, d) returns (r,g,b) [and calls itself recursively]:

§  Trace ray (p, d) to find nearest intersection p’
§  Select with probability (say) 50%:

§  Emitted:
 return 2 * (Lered, Legreen, Leblue) // 2 = 1/(50%)

§  Reflected:
 generate ray in random direction d’
 return 2 * fr(d èd’) * (n�d’) * TracePath(p’, d’)

3

Simplest Monte Carlo Path Tracer
For each pixel, cast n samples and average

§  Choose a ray with p=camera, d=(θ,ϕ) within pixel
§  Pixel color += (1/n) * TracePath(p, d)

TracePath(p, d) returns (r,g,b) [and calls itself recursively]:

§  Trace ray (p, d) to find nearest intersection p’
§  Select with probability (say) 50%:

§  Emitted:
 return 2 * (Lered, Legreen, Leblue) // 2 = 1/(50%)

§  Reflected:
 generate ray in random direction d’
 return 2 * fr(d èd’) * (n�d’) * TracePath(p’, d’)

Weight = 1/probability
Remember: unbiased
requires having f(x) / p(x)

Simplest Monte Carlo Path Tracer
For each pixel, cast n samples and average

§  Choose a ray with p=camera, d=(θ,ϕ) within pixel
§  Pixel color += (1/n) * TracePath(p, d)

TracePath(p, d) returns (r,g,b) [and calls itself recursively]:

§  Trace ray (p, d) to find nearest intersection p’
§  Select with probability (say) 50%:

§  Emitted:
 return 2 * (Lered, Legreen, Leblue) // 2 = 1/(50%)

§  Reflected:
 generate ray in random direction d’
 return 2 * fr(d èd’) * (n�d’) * TracePath(p’, d’)

Path terminated when
Emission evaluated

Arnold Renderer (M. Fajardo)
§  Works well diffuse surfaces, hemispherical light

From CS 283(294) a few years ago

Daniel Ritchie and Lita Cho

Advantages and Drawbacks

§  Advantage: general scenes, reflectance, so on
§  By contrast, standard recursive ray tracing only mirrors

§  This algorithm is unbiased, but horribly inefficient
§  Sample “emitted” 50% of the time, even if emitted=0
§  Reflect rays in random directions, even if mirror
§  If light source is small, rarely hit it

§  Goal: improve efficiency without introducing bias
§  Variance reduction using many of the methods

discussed for Monte Carlo integration last week
§  Subject of much interest in graphics in 90s till today

4

Outline

§  Motivation and Basic Idea

§  Implementation of simple path tracer

§  Variance Reduction: Importance sampling

§  Other variance reduction methods

§  Specific 2D sampling techniques

Importance Sampling
§  Pick paths based on energy or expected contribution

§  More samples for high-energy paths
§  Don’t pick low-energy paths

§  At “macro” level, use to select between reflected vs
emitted, or in casting more rays toward light sources

§  At “micro” level, importance sample the BRDF to pick
ray directions

§  Tons of papers in 90s on tricks to reduce variance in
Monte Carlo rendering

§  Importance sampling now standard in production. I
consulted on Pixar’s system (~2011)

Importance Sampling

 Can pick paths however we want, but
contribution weighted by 1/probability
§  Already seen this division of 1/prob in weights to

emission, reflectance

f (x)dx
Ω
∫ = 1

N
Yi

i=1

N

∑

Yi =
f (xi)
p(xi)

x1 xN

 E(f(x))

Simplest Monte Carlo Path Tracer
For each pixel, cast n samples and average

§  Choose a ray with p=camera, d=(θ,ϕ) within pixel
§  Pixel color += (1/n) * TracePath(p, d)

TracePath(p, d) returns (r,g,b) [and calls itself recursively]:

§  Trace ray (p, d) to find nearest intersection p’
§  Select with probability (say) 50%:

§  Emitted:
 return 2 * (Lered, Legreen, Leblue) // 2 = 1/(50%)

§  Reflected:
 generate ray in random direction d’
 return 2 * fr(d èd’) * (n�d’) * TracePath(p’, d’)

Importance sample Emit vs Reflect

TracePath(p, d) returns (r,g,b) [and calls itself recursively]:
§  Trace ray (p, d) to find nearest intersection p’
§  If Le = (0,0,0) then pemit= 0 else pemit= 0.9 (say)
§  If random() < pemit then:

§  Emitted:
 return (1/ pemit) * (Lered, Legreen, Leblue)

§  Else Reflected:
 generate ray in random direction d’
 return (1/(1- pemit)) * fr(d èd’) * (n�d’) * TracePath(p’, d’)

Importance sample Emit vs Reflect

TracePath(p, d) returns (r,g,b) [and calls itself recursively]:
§  Trace ray (p, d) to find nearest intersection p’
§  If Le = (0,0,0) then pemit= 0 else pemit= 0.9 (say)
§  If random() < pemit then:

§  Emitted:
 return (1/ pemit) * (Lered, Legreen, Leblue)

§  Else Reflected:
 generate ray in random direction d’
 return (1/(1- pemit)) * fr(d èd’) * (n�d’) * TracePath(p’, d’)

Can never be 1 unless
Reflectance is 0

5

Outline

§  Motivation and Basic Idea

§  Implementation of simple path tracer

§  Variance Reduction: Importance sampling

§  Other variance reduction methods

§  Specific 2D sampling techniques

More variance reduction

§  Discussed “macro” importance sampling
§  Emitted vs reflected

§  How about “micro” importance sampling
§  Shoot rays towards light sources in scene
§  Distribute rays according to BRDF

§  Pick a light source

§  Trace a ray towards that light

§  Trace a ray anywhere except for that light
§  Rejection sampling

§  Divide by probabilities
§  1/(solid angle of light) for ray to light source
§  (1 – the above) for non-light ray
§  Extra factor of 2 because shooting 2 rays

One Variation for Reflected Ray Russian Roulette

§  Maintain current weight along path
(need another parameter to TracePath)

§  Terminate ray iff |weight| < const.

§  Be sure to weight by 1/probability

6

Monte Carlo Extensions

Unbiased
§  Bidirectional path tracing
§  Metropolis light transport

Biased, but consistent
§  Noise filtering
§  Adaptive sampling
§  Irradiance caching

Monte Carlo Extensions

Unbiased
§  Bidirectional path tracing
§  Metropolis light transport

Biased, but consistent
§  Noise filtering
§  Adaptive sampling
§  Irradiance caching

RenderPark

Monte Carlo Extensions

Unbiased
§  Bidirectional path tracing
§  Metropolis light transport

Biased, but consistent
§  Noise filtering
§  Adaptive sampling
§  Irradiance caching

Heinrich

Monte Carlo Extensions

Unbiased
§  Bidirectional path tracing
§  Metropolis light transport

Biased, but consistent
§  Noise filtering
§  Adaptive sampling
§  Irradiance caching

Unfiltered

Filtered Jensen

Monte Carlo Extensions

Unbiased
§  Bidirectional path tracing
§  Metropolis light transport

Biased, but consistent
§  Noise filtering
§  Adaptive sampling
§  Irradiance caching

Adaptive

Fixed

Ohbuchi

Monte Carlo Extensions

Unbiased
§  Bidirectional path tracing
§  Metropolis light transport

Biased, but consistent
§  Noise filtering
§  Adaptive sampling
§  Irradiance caching

Jensen

7

Monte Carlo Path Tracing Image

2000 samples per pixel, 30 computers, 30 hours Jensen

Outline

§  Motivation and Basic Idea

§  Implementation of simple path tracer

§  Variance Reduction: Importance sampling

§  Other variance reduction methods

§  Specific 2D sampling techniques

2D Sampling: Motivation

§  Final step in sending reflected ray: sample 2D domain

§  According to projected solid angle

§  Or BRDF

§  Or area on light source

§  Or sampling of a triangle on geometry

§  Etc.

Sampling Upper Hemisphere

§  Uniform directional sampling: how to generate
random ray on a hemisphere?

§  Option #1: rejection sampling
§  Generate random numbers (x,y,z), with x,y,z in –1..1
§  If x2+y2+z2 > 1, reject
§  Normalize (x,y,z)
§  If pointing into surface (ray dot n < 0), flip

Sampling Upper Hemisphere

§  Option #2: inversion method
§  In polar coords, density must be proportional to sin θ

(remember d(solid angle) = sin θ dθ dϕ)
§  Integrate, invert è cos-1

§  So, recipe is
§  Generate ϕ in 0..2π
§  Generate z in 0..1
§  Let θ = cos-1 z
§  (x,y,z) = (sin θ cos ϕ, sin θ sin ϕ, cos θ)

§  This is what you need to do for homework 3 (simple upper
hemisphere sampling). Anything more advanced (importance
sampling later in lecture) is extra (homework 4).

8

BRDF Importance Sampling

§  Better than uniform sampling: importance sampling

§  Because you divide by probability, ideally
probability proportional to fr * cos θi

BRDF Importance Sampling

§  For cosine-weighted Lambertian:
§  Density = cos θ sin θ
§  Integrate, invert è cos-1(sqrt)

§  So, recipe is:
§  Generate ϕ in 0..2π
§  Generate z in 0..1
§  Let θ = cos-1 (sqrt(z))

BRDF Importance Sampling

§  Phong BRDF: fr ~ cosnα where α is angle
between outgoing ray and ideal mirror direction

§  Constant scale = ks(n+2)/(2π)

§  Can’t sample this times cos θi
§  Can only sample BRDF itself, then multiply by cos θi
§  That’s OK – still better than random sampling

BRDF Importance Sampling

§  Recipe for sampling specular term:
§  Generate z in 0..1
§  Let α = cos-1 (z1/(n+1))
§  Generate ϕα in 0..2π
§  This gives direction w.r.t. ideal mirror direction

§  Convert to (x,y,z), then rotate such that z points
along mirror dir.

Summary

§  Monte Carlo methods robust and simple (at least
until nitty gritty details) for global illumination

§  Must handle many variance reduction methods in
practice

§  Importance sampling, Bidirectional path tracing,
Russian roulette etc.

§  Rich field with many papers, systems researched
even over last 10 years

