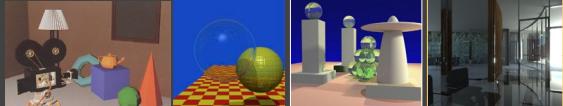


Computer Graphics II: Rendering

CSE 168 [Spr 21], Lecture 3: Illumination and Reflection
Ravi Ramamoorthi

<http://viscomp.ucsd.edu/classes/cse168/sp21>



To Do

- Homework 1 (ray tracer) due early next week
- Next assignment direct lighting (on UCSD online). Will cover that material next week

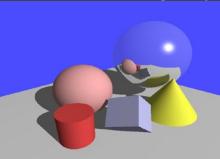
Illumination Models

Local Illumination

- Light directly from light sources to surface
- No shadows (cast shadows are a global effect)

Global Illumination: multiple bounces (indirect light)

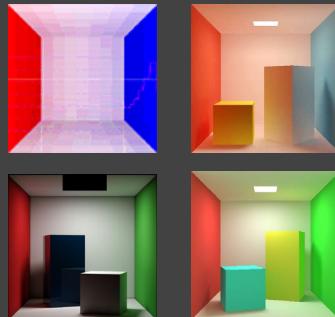
- Hard and soft shadows
- Reflections/refractions (already seen in ray tracing)
- Diffuse and glossy interreflections (radiosity, caustics)



Some images courtesy Henrik Wann Jensen

Diffuse Interreflection

Diffuse interreflection, color bleeding [Cornell Box]



Radiosity

Caustics

Caustics: Focusing through specular surface

- Major research effort in 80s, 90s till today

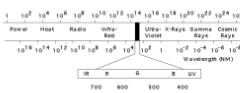
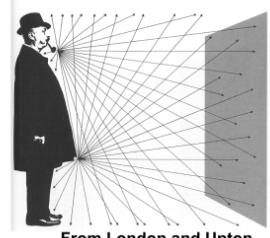
Motivation: BRDFs, Radiometry

- Basics of Illumination, Reflection
- Formal radiometric analysis (not ad-hoc)
- Reflection Equation (Local Illumination)
- Discussion of BRDFs
- Rendering Equation (Global Illumination) on Thu
- Formal analysis important for correct implementation

Light

Visible electromagnetic radiation

Power spectrum



From London and Upton

Polarization

Photon (quantum effects)

Wave (interference, diffraction)

CS348B Lecture 4

Pat Hanrahan, 2009

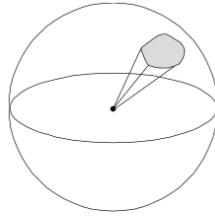
Radiometry

- Physical measurement of electromagnetic energy
- *Measure spatial (and angular) properties of light*
 - Radiance, Irradiance
 - Reflection functions: Bi-Directional Reflectance Distribution Function or BRDF
 - Reflection Equation
 - Simple BRDF models

Angles and Solid Angles

■ Angle $\theta = \frac{l}{r}$

⇒ circle has 2π radians



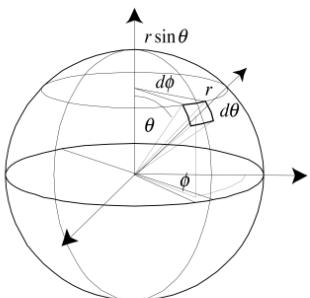
■ Solid angle $\Omega = \frac{A}{R^2}$

⇒ sphere has 4π steradians

CS348B Lecture 4

Pat Hanrahan, 2009

Differential Solid Angles

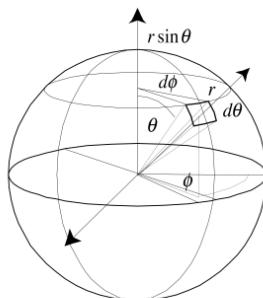


$$dA = (r d\theta)(r \sin \theta d\phi) = r^2 \sin \theta d\theta d\phi$$

CS348B Lecture 4

Pat Hanrahan, 2009

Differential Solid Angles



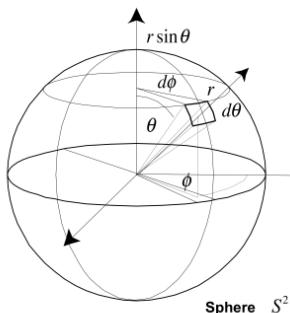
$$dA = (r d\theta)(r \sin \theta d\phi) = r^2 \sin \theta d\theta d\phi$$

$$d\omega = \frac{dA}{r^2} = \sin \theta d\theta d\phi$$

CS348B Lecture 4

Pat Hanrahan, 2009

Differential Solid Angles



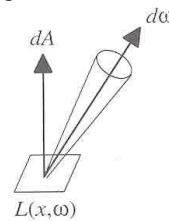
CS348B Lecture 4

$$\begin{aligned}
 d\omega &= \sin \theta d\theta d\phi \\
 \Omega &= \int d\omega \\
 &= \int_0^{\pi} \int_0^{2\pi} \sin \theta d\theta d\phi \\
 &= \int_{-1}^{1} \int_0^{2\pi} d \cos \theta d\phi \\
 &= 4\pi
 \end{aligned}$$

Pat Hanrahan, 2009

Radiance

- Power per unit projected area perpendicular to the ray per unit solid angle in the direction of the ray



- Symbol: $L(x, \omega)$ ($\text{W/m}^2 \text{ sr}$)

- Flux given by
 $d\Phi = L(x, \omega) \cos \theta d\omega dA$

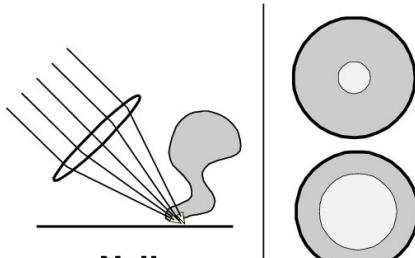
Radiance properties

- Radiance constant as propagates along ray
 - Derived from conservation of flux
 - Fundamental in Light Transport.

$$\begin{aligned}
 d\Phi_1 &= L_1 d\omega_1 dA_1 = L_2 d\omega_2 dA_2 = d\Phi_2 \\
 d\omega_1 &= dA_2/r^2 \quad d\omega_2 = dA_1/r^2 \\
 L_1(\omega_1) & \quad \quad \quad d\omega_1 dA_1 = \frac{dA_1 dA_2}{r^2} = d\omega_2 dA_2 \\
 d\omega_2 & \quad \quad \quad \therefore L_1 = L_2
 \end{aligned}$$

Quiz

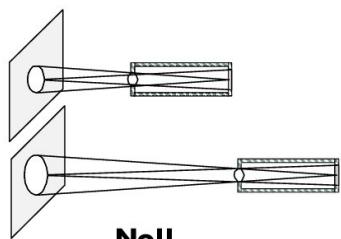
Does radiance increase under a magnifying glass?



Pat Hanrahan, Spring 2002

Quiz

Does the brightness that a wall appears to the eye depend on the distance of the viewer to the wall?



CS348B Lecture 4

Pat Hanrahan, Spring 2002

Radiance properties

- Sensor response proportional to radiance (constant of proportionality is throughput)
 - Far away surface: See more, but subtends smaller angle
 - Wall equally bright across viewing distances

Consequences

- Radiance associated with rays in a ray tracer
- Other radiometric quants derived from radiance
- This course primarily about computing radiance*

Irradiance, Radiosity

- Irradiance E is radiant power per unit area
- Integrate incoming radiance over hemisphere
 - Projected solid angle ($\cos \theta d\omega$)
 - Uniform illumination:
Irradiance = π [CW 24,25]
 - Units: W/m^2
- Radiant Exitance (radiosity)
 - Power per unit area leaving surface (like irradiance)

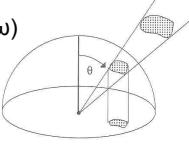
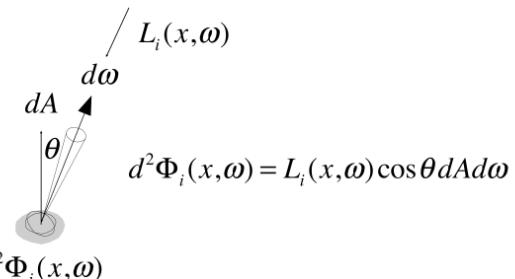


Figure 2.8: Projection of differential area.

Directional Power Arriving at a Surface



CS348B Lecture 4

Pat Hanrahan, 2007

Irradiance from the Environment

$$d^2\Phi_i(x, \omega) = L_i(x, \omega) \cos \theta dA d\omega$$

$$dE(x, \omega) = L_i(x, \omega) \cos \theta d\omega$$

$$E(x) = \int_{H^2} L_i(x, \omega) \cos \theta d\omega$$

CS348B Lecture 4

Pat Hanrahan, 2007

Uniform Area Source

$$E(x) = \int_{H^2} L \cos \theta d\omega$$

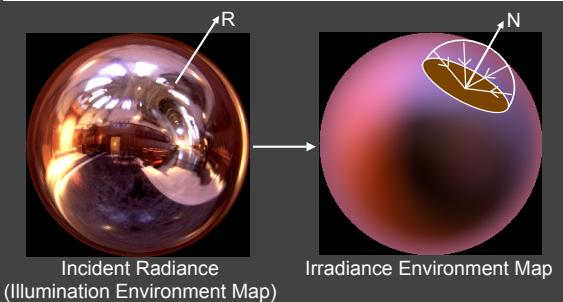
$$= L \int_{\Omega} \cos \theta d\omega$$

$$= L \tilde{\Omega}$$

CS348B Lecture 5

Pat Hanrahan, 2009

Irradiance Environment Maps



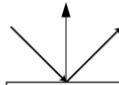
Radiometry

- Physical measurement of electromagnetic energy
- Measure spatial (and angular) properties of light
 - Radiance, Irradiance
 - Reflection functions: Bi-Directional Reflectance Distribution Function or BRDF
 - Reflection Equation
 - Simple BRDF models

Types of Reflection Functions

Ideal Specular

- Reflection Law
- Mirror

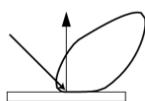


Ideal Diffuse

- Lambert's Law
- Matte

Specular

- Glossy
- Directional diffuse



CS348B Lecture 10

Pat Hanrahan, Spring 2009

Materials

Plastic

Metal

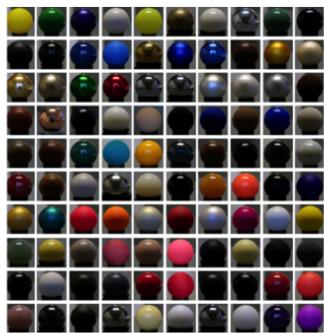
Matte

From Apodaca and Gritz, *Advanced RenderMan*

CS348B Lecture 10

Pat Hanrahan, Spring 2009

Spheres [Matusik et al.]



CS348B Lecture 10

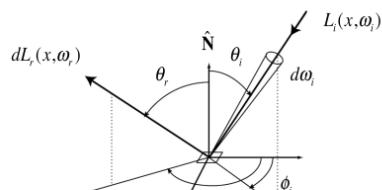
Pat Hanrahan, Spring 2009

Building up the BRDF

- Bi-Directional Reflectance Distribution Function [Nicodemus 77]
- Function based on incident, view direction
- Relates incoming light energy to outgoing
- Unifying framework for many materials

The BRDF

Bidirectional Reflectance-Distribution Function



$$f_r(\omega_i \rightarrow \omega_r) \equiv \frac{dL_r(\omega_i \rightarrow \omega_r)}{dE_i} \quad \left[\frac{1}{sr} \right]$$

CS348B Lecture 10

Pat Hanrahan, Spring 2009

BRDF

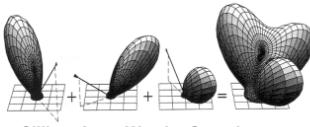
- Reflected Radiance proportional Irradiance
- Constant proportionality: BRDF
- Ratio of outgoing light (radiance) to incoming light (irradiance)
 - Bidirectional Reflection Distribution Function
 - (4 Vars) units 1/sr

$$f(\omega, \omega_r) = \frac{L_r(\omega_r)}{L_i(\omega) \cos \theta d\omega_r}$$

$$L_r(\omega_r) = L_i(\omega) f(\omega, \omega_r) \cos \theta d\omega_r$$

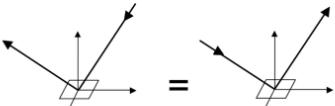
Properties of BRDF's

1. Linearity



From Sillion, Arvo, Westin, Greenberg

2. Reciprocity principle



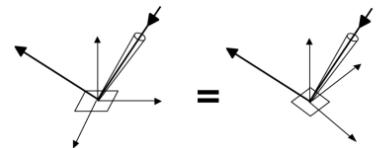
$f_r(\omega_r \rightarrow \omega_i) = f_r(\omega_i \rightarrow \omega_r)$

CS348B Lecture 10

Pat Hanrahan, Spring 2009

Properties of BRDF's

3. Isotropic vs. anisotropic



$f_r(\theta_i, \varphi_i, \theta_r, \varphi_r) = f_r(\theta_i, \theta_r, \varphi_r - \varphi_i)$

Reciprocity and isotropy

$f_r(\theta_i, \theta_r, \varphi_r - \varphi_i) = f_r(\theta_r, \theta_i, \varphi_i - \varphi_r) = f_r(\theta_i, \theta_r, |\varphi_r - \varphi_i|)$

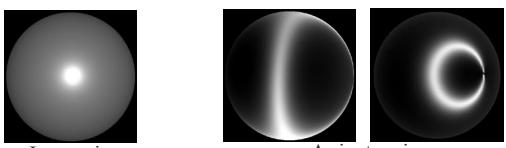
4. Energy conservation

CS348B Lecture 10

Pat Hanrahan, Spring 2009

Isotropic vs Anisotropic

- Isotropic: Most materials (you can rotate about normal without changing reflections)
- Anisotropic: brushed metal etc. preferred tangential direction



Isotropic

Anisotropic

Energy Conservation

$$\frac{d\Phi_r}{d\Phi_i} = \frac{\int_{\Omega_r} L_r(\omega_r) \cos \theta_r d\omega_r}{\int_{\Omega_i} L_i(\omega_i) \cos \theta_i d\omega_i}$$

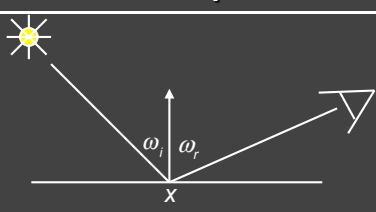
$$= \frac{\int_{\Omega_r} \int_{\Omega_i} f_r(\omega_i \rightarrow \omega_r) L_i(\omega_i) \cos \theta_i d\omega_i \cos \theta_r d\omega_r}{\int_{\Omega_i} L_i(\omega_i) \cos \theta_i d\omega_i}$$

$$\leq 1$$

CS348B Lecture 10

Pat Hanrahan, Spring 2009

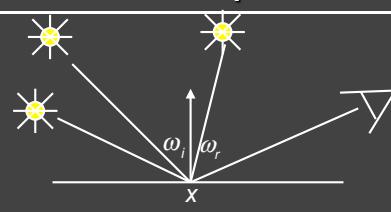
Reflection Equation



$L_r(x, \omega_r) = L_e(x, \omega_r) + L_i(x, \omega_i) f(x, \omega_i, \omega_r) (\omega_i \cdot n)$

Reflected Light	Emission	Incident	BRDF	Cosine of
(Output Image)		Light (from		Incident angle
		light source)		

Reflection Equation



Sum over all light sources

$$L_r(x, \omega_r) = L_e(x, \omega_r) + \sum_{\text{Reflected Light}} L_i(x, \omega_i) f(x, \omega_i, \omega_r) (\omega_i \cdot n)$$

Reflected Light	Emission	Incident	BRDF	Cosine of
(Output Image)		Light (from		Incident angle
		light source)		

Reflection Equation

Replace sum with integral

$$L_r(x, \omega_r) = L_e(x, \omega_r) + \int_{\Omega} L_i(x, \omega_i) f(x, \omega_i, \omega_r) \cos \theta_i d\omega_i$$

Reflected Light (Output Image) Emission Incident Light (from light source) BRDF Cosine of Incident angle

Environment Maps

- Light as a function of direction, from entire environment
- Captured by photographing a chrome steel or mirror sphere
- Accurate only for one point, but distant lighting same at other scene locations (typically use only one env. map)

Blinn and Newell 1976, Miller and Hoffman, 1984
Later, Greene 86, Cabral et al. 87

Environment Maps

- Environment maps widely used as lighting representation
- Many modern methods deal with offline and real-time rendering with environment maps
- Image-based complex lighting + complex BRDFs

Radiometry

- Physical measurement of electromagnetic energy
- Measure spatial (and angular) properties of light
 - Radiance, Irradiance
 - Reflection functions: Bi-Directional Reflectance Distribution Function or BRDF
 - Reflection Equation
 - Simple BRDF models

Brdf Viewer plots

Diffuse Torrance-Sparrow Anisotropic

by written by Szymon Rusinkiewicz

Ideal Diffuse Reflection

Assume light is **equally likely to be reflected in any output direction (independent of input direction)**.

$$L_{r,d}(\omega_r) = \int f_{r,d} L_i(\omega_i) \cos \theta_i d\omega_i$$

$$= f_{r,d} \int L_i(\omega_i) \cos \theta_i d\omega_i$$

$$= f_{r,d} E$$

$$M = \int L_r(\omega_r) \cos \theta_r d\omega_r = L_r \int \cos \theta_r d\omega_r = \pi L_r$$

$$\rho_d = \frac{M}{E} = \frac{\pi L_r}{E} = \frac{\pi f_{r,d} E}{E} = \pi f_{r,d} \Rightarrow f_{r,d} = \frac{\rho_d}{\pi}$$

Lambert's Cosine Law $M = \rho_d E = \rho_d E_s \cos \theta_s$

CS348B Lecture 10 Pat Hanrahan, Spring 2002

Phong Model

$$R(L) \quad \hat{E} \cdot R(\hat{L})^s$$

$$R(E) \quad \hat{L} \cdot R(\hat{E})^s$$

Reciprocity: $(\hat{E} \cdot R(\hat{L}))^s = (\hat{L} \cdot R(\hat{E}))^s$

Distributed light source!

CS348B Lecture 10 Pat Hanrahan, Spring 2002

Specular Term (Phong)

Phong Model

Mirror Diffuse

CS348B Lecture 10 S Pat Hanrahan, Spring 2002

Fresnel Reflectance

Metal (Aluminum)

Dielectric ($N=1.5$)

Reflectance

Angle from normal

Gold $F(0)=0.82$
Silver $F(0)=0.95$

Glass $n=1.5 F(0)=0.04$
Diamond $n=2.4 F(0)=0.15$

Schlick Approximation $F(\theta) = F(0) + (1 - F(0))(1 - \cos\theta)^5$

CS348B Lecture 10 Pat Hanrahan, Spring 2002

Experiment

Reflections from a shiny floor

From Lafortune, Foo, Torrance, Greenberg, SIGGRAPH 97

CS348B Lecture 10 Pat Hanrahan, Spring 2002

Torrance-Sparrow

Fresnel term: allows for wavelength dependency

Geometric Attenuation: reduces the output based on the amount of shadowing or masking that occurs.

How much of the macroscopic surface is visible to the light source

How much of the macroscopic surface is visible to the viewer

Distribution: distribution function determines what percentage of microfacets are oriented to reflect in the viewer direction.

$$f = \frac{F(\theta_i)G(\omega_i, \omega_r)D(\theta_h)}{4\cos(\theta_i)\cos(\theta_r)}$$

Other BRDF models

- Empirical: Measure and build a 4D table
- Anisotropic models for hair, brushed steel
- Cartoon shaders, funky BRDFs
- Capturing spatial variation
- Very active area of research