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Computer Graphics II: Rendering 

CSE 168 [Spr 21], Lecture 13: Monte Carlo Denoising        
Ravi Ramamoorthi 

http://viscomp.ucsd.edu/classes/cse168/sp21 

To Do 

§  Homework 4 (importance sampling) due May 17 

§  These lectures cover more advanced topics 
§  May be relevant for your final project 
§  Or curiosity in terms of frontiers of modern rendering 

§  This lecture on Monte Carlo denoising summary of 
whole CSE 274 class I taught last academic year 

§  Topic of great current interest in both research and 
production offline and real-time (OptiX, RTX GPUs) 

§  Good idea for final project, or simply leverage 
denoiser built into modern OptiX implementations 

§  Can get down to 1-4 samples per pixel.  Amazing! 
§  Lecture is high level, ask if need detailed pointers 
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Cook et al. [1984] results


depth of field 
motion blur 

soft shadows 
 
glossy reflection 

Motivation 

§  Distribution effects (depth of field, motion blur, global 
illumination, soft shadows) are slow.  Many dimensions sample 

§  Ray Tracing physically accurate but slow, not real-time 

§  Can we adaptively sample and filter for fast, real-time? 

Monte Carlo Path Tracing 

1000 paths/pixel 

Jensen 

Sampling and Reconstruction 

§  Monte Carlo is noisy at low sample counts 

§  Can we reduce time/samples by smart adaptive 
sampling and smart filtering/reconstruction? 

§  General area of Monte Carlo denoising  

§  Long history [Mitchell 91, Guo 98] 
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Sample result


4 samples/pixel 
(40.8 sec) 

Path traced scene Filtered result 

4 samples/pixel 
(48.9 sec) 

[Kalantari et al. 2015] 

using only post-process filter! scene by Jo Ann Elliott 
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Adaptive sampling + reconstruction

n  These algorithms use 2 kinds of noise reduction 

strategies, sometimes combined: 
1.  Adaptive sampling algorithms 

§  Use information from renderer to position new 
samples better to reduce noise 

2.  Reconstruction (filtering) algorithms 
§  Use information from renderer to remove MC 

noise directly 

n  Both methods have been explored in the past, 
but new algorithms make remarkable advances 

History 

§  Adaptive sampling old technique Mitchell et al. 87, 91,… 

§  But not very widely used… artifacts, can miss features 

§  After seminal papers in 87-91, not much follow on 

 

Directional Coherence Maps 
§  Allocate samples to edges (Guo 98)  Most of variance at 

those edges in the image 

Directional Coherence Maps (Guo 98) 

Guo 98 

A Frequency Analysis 
of Light Transport 

F. Durand, MIT CSAIL 

N. Holzschuch, C. Soler, ARTIS/GRAVIR-IMAG INRIA 

E. Chan, MIT CSAIL 

F. Sillion, ARTIS/GRAVIR-IMAG INRIA 
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Fourier analysis 101 

•  Spectrum corresponds to blurriness: 
– Sharpest feature has size ~ 1/Fmax 

•  Convolution theorem: 
– Multiplication of functions: spectrum is convolved 

– Convolution of functions: spectrum is multiplied 

•  Classical spectra:  
– Box becomes sinc 
– Dirac becomes constant 

Transport 

•  Shear: x’ = x - v d 
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Transport in Fourier space 
•  Shear in primal: x’ = x - v d 

•  Shear in Fourier, along the other dimension 
Ray space Ray space 

Fourier space 
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Transport becomes Shear 

•  This is consistent with light field spectra 
[Chai et al. 00, Isaksen et al. 00] 

From [Chai et al. 2000] 

BRDF integration 

•  Ray-space: convolution 
– Outgoing light:  

convolution of incoming light and BRDF 

– For rotationally-invariant BRDFs 

•  Fourier domain: multiplication  
– Outgoing spectrum:  multiplication of incoming 

spectrum and BRDF spectrum 

Adaptive shading sampling 

•  Per-pixel prediction of max. frequency (bandwidth) 
–  Based on curvature, BRDF, distance to occluder, etc. 

– No spectrum computed, just estimate max frequency 

Per-pixel bandwidth criterion 
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Adaptive shading sampling 

•  Per-pixel prediction of max. frequency (bandwidth) 
–  Based on curvature, BRDF, distance to occluder, etc. 

– No spectrum computed, just estimate max frequency 

Shading samples 

Uniform sampling 

20,000 samples 

Adaptive sampling 

20,000 samples 

Resurgence (2008 - ) 

§  Eurographics 2015 STAR report by Zwicker et al. [former 
UCSD faculty] 

§  [Durand et al. 2005] Frequency analysis light transport.  
Proposed use for adaptive sampling.  Not very practical 

Multi-Dimensional Adaptive Sampling 
§  Hachisuka, Jarosz, … Zwicker, Jensen [MDAS 2008] 

§  Scenes with motion blur, depth of field, soft shadows 

§  Involves high-dimensional integral, converges slowly 

§  Exploit high-dimensional info to sample adaptively 

§  Sampling in 2D image plane or other dims inadequate 
§  Need to consider full joint high-dimensional space 

Multidimensional Adaptive Sampling 



5 

Multidimensional Adaptive Sampling Multi-Dimensional Adaptive Sampling 

Motion Blur and Depth of Field 32 samples per pixel 

A-Priori Methods 

§  Egan et al. 2009: Frequency Analysis and Sheared 
Filtering for Motion Blur; first deep use frequency anal.  

Fast Motion Blur Rendering 

Garfield: A Tail of Two Kitties 
Rhythm & Hues Studios 
Twentieth Century-Fox Film Corporation 

A Simple Approach 
§  For each pixel 

§  Sample many different moments in time 
§  Very expensive.  Can we do better sampling, filtering? 

t = 0.00 
t = 0.25 
t = 0.50 
t = 0.75 
t = 1.00 

t = [0.0, 1.0] 

Observation 1 
§  Motion-blurred images have low spatial frequency 

Egan, Tseng, Holzschuch, Durand, Ramamoorthi 09 
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Observation 2 
§  Neighboring pixels sample correlated signals 

t = 5.0 
 . 
 . 
 . 
 . 
t = 0.0 

pixel 1 pixel 2 pixel 3 
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Our Method 

§  Share samples across pixels 

§  Use wide filter sheared in space-time 

 
t = 5.0 
 . 
 . 
 . 
 . 
t = 0.0 

pixel 1 pixel 2 pixel 3 
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Basic Example 

x 

y t 

x 

f(x, t) 

•  Low velocity,  t = [ 0.0, 1.0 ]  

f(x, y) 

Basic Example 

x 

y t 

x 

f(x, t) 

•  High velocity,  t = [ 0.0, 1.0 ]  

f(x, y) 

Shear in Space-Time 

x 

y t 

x 

f(x, t) 

•  Object moving with low velocity 

f(x, y) 

shear 

Basic Example – Fourier Domain 
§  Fourier spectrum, zero velocity  

t 

x 

f(x, t) F(Ωx, Ωt) 
texture 

bandwidth 

Ωt 

Ωx 
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Basic Example – Fourier Domain 
§  Low velocity, small shear in both domains 

f(x, t) F(Ωx, Ωt) 

t 

x 

slope = 
-speed 

Ωt 

Ωx 

Basic Example – Fourier Domain 
§  Large shear 

f(x, t) F(Ωx, Ωt) 

t 

x Ωt 

Ωx 

Basic Example – Fourier Domain 
§  Non-linear motion, wedge shaped spectra 

f(x, t) 

Ωt 

Ωx 

F(Ωx, Ωt) 

t 

x 

shutter 
bandlimits in 

time 

 -min 
speed 

 -max speed 

shutter applies blur 
across time 

indirectly 
bandlimits in 

space 

Standard Reconstruction Filter 

•  Standard anti-aliasing and reconstruction filter 
is axis-aligned 

Ωt 

Fourier Domain 

aliasing 

Ωx 

Sheared Reconstruction Filter 

•  Our sheared filter allows for much tighter 
packing of replicas (ie sparse sampling) 

Ωt 

Fourier Domain 

No aliasing! 

Ωx 

Car Scene 

Static Render Our Method, 
4 samples per pixel 
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Car Scene 

Ground Truth Our Method, 
4 samples per pixel 

Ballerina Video 

Fourier Analysis, Sheared Filtering 
Previous Work 

§  Shinya 93: Spatio-temporal filtering of uniform velocity 
§  Chai et al. 00: Plenoptic Sampling: wedge spectra 
§  Hachisuka et al. 08: Multidimensional Adaptive Sampling 

Our Subsequent Work  
§  Adaptive Wavelet Rendering [Overbeck et al 09] 
§  Area Light Soft Shadows [Egan et al 11a] 
§  Spherical Harmonic Directional Occlusion [Egan et al 11b] 
§  Fast (real-time) Sheared Filtering [Yan et al 15] 

Real-Time Axis-Aligned Filtering 
§  Soft Shadows [Mehta Wang Ramamoorthi 12] 
§  Global Illumination [Mehta Wang Ramamoorthi Durand 13] 
§  Multiple Effects [Mehta Yao Ramamoorthi Durand 14] 
§  Multiple Axis-Aligned Filtering [Wu et al. 17] 

Fast Sheared Filtering (FSF) 
§  Separable sheared filter 

Fourier: sheared shape 
 
Primal: separable filter, still 
hard to extend to higher 
dimensions (can be done by 
approximation)  

Fourier: compact pack replicas 
 
Primal: low sampling rate 

Fast Sheared Filtering 
§  Motivation: Cover the spectrum compactly 

§  Multiple Axis-Aligned Filter (MAAF) 

MAAF: Fourier 

p=0 
p=1 
p=2 

p=-1 
p=-2 
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Video Sparse Sampling and Reconstruction 
A Posteriori Methods 

[Hachisuka et al. 2008] 

[Moon et al. 2016] 

[Li et al. 2012] 

[Rousselle et al. 2012] 

A Priori Methods 

[Chai et al. 2000] [Durand et al. 2005] [Egan et al. 2009] 

[Lehtinen et al. 2012] [Mehta et al. 2014] [Yan et al. 2015] 

Adaptive Wavelet Rendering 

Overbeck et al 09 
General high-D  
effects.  Simple 
and fast (renders  
Into wavelet dom) 

FF VIDEO 

Feature-Space Methods 
§  General practical denoising (no frequency) [2012-] 

§  General effects (Sec 2.3 of EG STAR Report) 

§  General image-space denoising framework  

§  But use auxiliary features (depth, normals, etc.) 

§  Basis for methods deployed in industry today 

  

Random Parameter Filtering 

§  Sen Darabi 12, importance of each feature 
§  Addresses noisy features (e.g. depth of field) 
§  Notion of mutual information 

§  Weighted bilateral filter, very good at low samples 
§  Parameters determined by feature importance  
§  Auxiliary features are key to beat image denoising 
§  Has led to newer methods, commercialization 

Random Parameter Filtering 
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Subsequent Work 

§  SURE (Stein’s unbiased risk estimator: general 
kernels, adaptive sampling, general effects) 

Subsequent Work 

§  Moon et al. local linear or polynomial models, treat as 
regression.  Many other methods 

§  APR: Polynomial order chosen to minimize error 

§  Newest methods use deep learning instead 

Impact: Offline 
§  Handle general effects.  Sample and denoise (builds on 

AWR, AAF, FSF, MAAF.  Predict general filter kernel) 

§  Many more sophisticated methods available now; used 
in almost every major production rendering software 

§  Based on Deep Learning for Monte Carlo Denoising 

Bako et al. 17 (not my work) 

Impact: Real-Time 

Impact: Real-Time 
§  Extend AAF, FSF, MAAF: Predict Filter based on 

Deep Learning (sample and AI-based denoising) 

§  NVIDIA software (OptiX 2017), hardware (RTX 2018) 

§  40-year journey: ray tracing curiosity to every pixel  

Whitted 79 (74 min 512x512) NVIDIA RTX 2018, OptIX: Pixar real-time previewer 

From SIGGRAPH 18 

Real Photo: Speaker and Turner Whitted at SIGGRAPH 18 


