To Do
Computer Graphics II: Rendering Homework 4 (importance sampling) due May 17

CSE 168 [Spr 21], Lecture 13: Monte Carlo Denoising Thfﬂse LeCtL:reS cover more IadV_antced topics
; ; ay be relevant for your final projec
Ravi Ramamoorthi Or curiosity in terms of frontiers of modern rendering

http://viscomp.ucsd.edu/classes/cse168/sp21 This lecture on Monte Carlo denoising summary of
whole CSE 274 class | taught last academic year
Topic of great current interest in both research and
production offline and real-time (OptiX, RTX GPUs)
Good idea for final project, or simply leverage
denoiser built into modern OptiX implementations
Can get down to 1-4 samples per pixel. Amazing!
Lecture is high level, ask if need detailed pointers

Motivation

Distribution effects (depth of field, motion blur, global
illumination, soft shadows) are slow. Many dimensions sample

motion blur

soft shadows Ray Tracing physically accurate but slow, not real-time

glossy reflection Can we adaptively sample and filter for fast, real-time?

Monte Carlo Path Traci Sampling and Reconstruction

Monte Carlo is noisy at low sample counts

Can we reduce time/samples by smart adaptive
sampling and smart filtering/reconstruction?

General area of Monte Carlo denoising
Long history [Mitchell 91, Guo 98]




4 samples/pixel using only post-process filter!
(46.9 sec)

scene by Jo Ann Elliott

History

Adaptive sampling old technique Mitchell et al. 87, 91,...

But not very widely used... artifacts, can miss features

After seminal papers in 87-91, not much follow on

Directional Coherence Maps (Guo 98)

ure 2: Progressive renderings of an office scene it by sunlight transferred through a light shelf. (a) The approximate image at the end|

These algorithms use 2 kinds of noise reduction
strategies, sometimes combined:

Adaptive sampling algorithms
Use information from renderer to position new
samples better to reduce noise
Reconstruction (filtering) algorithms

Use information from renderer to remove MC
noise directly

Both methods have been explored in the past,
but new algorithms make remarkable advances

Directional Coherence Maps

Allocate samples to edges (Guo 98) Most of variance at
those edges in the image

A Frequency Analysis
of Light Transport

F. Durand, MIT CSAIL
N. Holzschuch, C. Soler, ARTIS/GRAVIR-IMAG INRIA
E. Chan, mIT csAIL

F. Sillion, ARTIS/GRAVIR-IMAG INRIA




Fourier analysis 101 Transport

* Spectrum corresponds to blurriness: " Shear: x"=x-vd
— Sharpest feature has size ~ 1/F .

* Convolution theorem:
— Multiplication of functions: spectrum is convolved
— Convolution of functions: spectrum is multiplied

* Classical spectra:

— Box becomes sinc
— Dirac becomes constant

X (space) X (space)

Transport in Fourier space Transport becomes Shear

* Shearin primal: x" =x-vd . ] R
. . ] ] * This is consistent with light field spectra
* Shear in Fourier, along the other dimension [Chai et al. 00, Isaksen et al. 00]

Ray space Ray space

Fourier space ' Fourier space

Wy (angle)
Wv (angle)

(dD)Scene image (d2) EPT (d3) Fourier transform of EPT

From [Chai et al. 2000]

BRDF integration Adaptive shading sampling

* Ray-space: convolution 2 * Per-pixel prediction of max. frequency (bandwidth)
— Outgoing light: — Based on curvature, BRDF, distance to occluder, etc.
convolution of incoming light and BRDF — No spectrum computed, just estimate max frequency

— For rotationally-invariant BRDFs

* Fourier domain: multiplication

— Outgoing spectrum: multiplication of incoming
spectrum and BRDF spectrum

Per-pixel bandwidth criterion



Adaptive shading sampling

* Per-pixel prediction of max. frequency (bandwidth)
— Based on curvature, BRDF, distance to occluder, etc.

— No spectrum computed, just estimate max frequency

Shading samples

Adaptive sampling

20,000 samples

Multi-Dimensional Adaptive Sampling

Hachisuka, Jarosz, ... Zwicker, Jensen [MDAS 2008]
Scenes with motion blur, depth of field, soft shadows
Involves high-dimensional integral, converges slowly
Exploit high-dimensional info to sample adaptively

Sampling in 2D image plane or other dims inadequate
Need to consider full joint high-dimensional space

Image-space Adaptive Sampling Multidimensional Adaptive Sampling

Uniform sampling

20,000 samples

Resurgence (2008 - )
Eurographics 2015 STAR report by Zwicker et al. [former
UCSD faculty]

[Durand et al. 2005] Frequency analysis light transport.
Proposed use for adaptive sampling. Not very practical

Multidimensional Adaptive Sampling

Reference Our Method Mitchell

AN

MsE: 17310 MSE: 365 107




Multidimensional Adaptive Sampling

Sampling Density

Figure 10: Visualizations of projected sample distributions using|
our method for the chess scene from Figure 8 and the pool scene from
Figure 7. Our adaptive sampler places samples both around high
frequency image discontinuities (in focus chess piece and stationary|
pool ball) as well as in regions which exhibit significant motion blur|
or depth of field effects.

A-Priori Methods

Egan et al. 2009: Frequency Analysis and Sheared
Filtering for Motion Blur; first deep use frequency anal.

Equal Time, Stratified  Our Method Equal Quality, Stratified
i 8 64 i
4min 2 sec 3 min 57 sec 14 min 25 sec

A Simple Approach

For each pixel
Sample many different moments in time

Very expensive. Can we do better sampling, filtering?

t=0.00
t=0.25
t = 04D 1.0]
t=0.75
t=1.00

Motion Blur and Depth of Field 32 samples per pixel

Fast Motion Blur Rendering

Garfield: A Tail of Two Kitties
Rhythm & Hues Studios
Twentieth Century-Fox Film Corporation

Observation 1

Motion-blurred images have low spatial frequency

Ny -6

Egan, Tseng, Holzschuch, Durand, Ramamoorthi 09



Observation 2

Neighboring pixels sample correlated signals

TIME AXIS

=00 ® |

pixel 1 pixel 2 pixel 3

Basic Example

Low velocity, t=[0.0,1.0]
f(x, y)

Shear in Space-Time

Object moving with low velocity / shear
f(x, t)

Our Method

Share samples across pixels

Use wide filter sheared in space-time

i':
o
(=00 *

pixel 1 pixel 2 pixel 3

t=25.0

TIME AXIS

Basic Example
High velocity, t=[0.0,1.0]
f(x, y) f(x, t)

Basic Example — Fourier Domain

Fourier spectrum, zero velocity

f(X’ t) F(QX’ Qt)
texture
bandwidth

1 1
1 1
1 1
1 1
1 1
1 1
—_— I
1 1
1 1 QX
1 1
1 1
1 1
1 1

QO



Basic Example — Fourier Domain

Low velocity, small shear in both domains

F(Qx Q)

Basic Example — Fourier Domain

Non-linear motion, wedge shaped spectra

shutter applies blur inklirttetly
across time tavatligiiss

X

Sheared Reconstruction Filter

Our sheared filter allows for much tighter
packing of replicas (ie sparse sampling)

Fourier Domain

No aliasing!

Basic Example — Fourier Domain

Large shear

f(x, )

Standard Reconstruction Filter

Standard anti-aliasing and reconstruction filter
is axis-aligned

Fourier Domain

aliasing

Car Scene

Our Method, Static Render
4 samples per pixel




Car Scene Ballerina Video

Our Method, Ground Truth

Ballerina sequence

4 samplei per pixel (8 samples/pixel)

Note smooth motion-blur
of dress and shadows

Frequency Analysis
and Sheared Reconstruction
for Rendering Motion Blur

ID: 0034

Fourier Analysis, Sheared Filtering Fast Sheared Filtering (FSF)
Previous work ... -
Shinya 93: Spatio-temporal filtering of uniform velocity

Chai et al. 00: Plenoptic Sampling: wedge spectra
Hachisuka et al. 08: Multidimensional Adaptive Sampling

Separable sheared filter

Our Subsequent Work
Adaptive Wavelet Rendering [Overbeck et al 09]
Area Light Soft Shadows [Egan et al 11a]
Spherical Harmonic Directional Occlusion [Egan et al 11b]
Fast (real-time) Sheared Filtering [Yan et al 15] Fourier: sheared shape Fourier: compact pack replicas

el setemalziner) Sl : Primal: separable filter, still  Primal: low sampling rate
Soft Shadows [Mehta Wang Ramamoorthi 12] hard to extend to higher
Global lllumination [Mehta Wang Ramamoorthi Durand 13] dimensions (can be done by
Multiple Effects [Mehta Yao Ramamoorthi Durand 14] approximation)
Multiple Axis-Aligned Filtering [Wu et al. 17]

Fast Sheared Filtering

W(Q,.0,) = Z 1y G (= C:08) G (0, - CP:o?)

p=—(N-1)




(Overbeck et al 09
General high-D
effects. Simple
land fast (renders
Into wavelet dom)

Random Parameter Filtering

Sen Darabi 12, importance of each feature
Addresses noisy features (e.g. depth of field)
Notion of mutual information

Weighted bilateral filter, very good at low samples
Parameters determined by feature importance
Auxiliary features are key to beat image denoising
Has led to newer methods, commercialization

() Screen position __(b) Random parameters _(c) World space coords. _(d) Surface normals (©) Texture value (f) Sample color

Sparse Sampling and Reconstruction

A Priori Methods A Posteriori Methods

[Hachisuka et al. 2008]  [Li et al. 2012]

[Lehtinen et al. 2012Mehta et al. 2014] [Yan et al. 2015] [Rousselle et al. 2012]  [Moon et al. 2016]

Feature-Space Methods
General practical denoising (no frequency) [2012-]
General effects (Sec 2.3 of EG STAR Report)
General image-space denoising framework
But use auxiliary features (depth, normals, etc.)

Basis for methods deployed in industry today

after RPF (8 samples/pixel)




Subsequent Wo Subsequent W

Moon et al. local linear or polynomial models, treat as

SURE (Stein’s unbiased risk estimator: general
regression. Many other methods

kernels, adaptive sampling, general effects)
APR: Polynomial order chosen to minimize error

Newest methods use deep learning instead

Noisy Monte Carlo Image

(2) Ours, 16 spp (b) MC inpt, 16 spp (c) Ours, 16 5pp (d) Reference, 32K spp
IMSE 0.00541 FMSE 0.68832 FMSE 0.00541

Greedy Error Minimization [Roussele Our Approach
Figure 1: Comparisons between greedy error minimization (GEM) [Rousselle et al. 2011] and our SURE-based filtering. With SURE, we]
are able 10 use kernels (cross bilateral filters in this case) that are more effective than GEM’s isotropic Gassians. Thus, our approach better,
adapts to anisotropic features (such as the motion blur pattern due to the motion of the airplane) and preserves scene details (such as the]
textures on the floor and curtains). The kernels of both methods are visualized for comparison.

Impact: Offline Impact: Real-Time

Handle general effects. Sample and denoise (builds on
AWR, AAF, FSF, MAAF. Predict general filter kernel)

e OptiX 5 with Al-acct

Many more sophisticated methods available now; used
in almost every major production rendering software

Based on Deep Learning for Monte Carlo Denoising
S Denorsed] e

Vg
—

£ Youlube, L2
Bako et al. 17 (not my work)

Impact: Real-Time From SIGGRAPH 18

Extend AAF, FSF, MAAF: Predict Filter based on
Deep Learning (sample and Al-based denoising)

NVIDIA software (OptiX 2017), hardware (RTX 2018)

40-year journey: ray tracing curiosity to every pixel

Real Photo: Speaker and Turner Whitted at SIGGRAPH 18




