Computer Graphics II: Rendering

CSE 168 [Spr 21], Lecture 1: Overview and Ray Tracing
Ravi Ramamoorthi

http://viscomp.ucsd.edu/classes/cse168/sp21/

Instructor

Ravi Ramamoorthi http://www.cs.ucsd.edu/~ravir
PhD Stanford, 2002 [with Pat Hanrahan, 2020 Turing Award]
“Spherical Harmonic Lighting” widely used in games
(e.g. Halo series), movies (e.g. Avatar), etc. (Adobe, ...)
At Columbia 2002-2008, UC Berkeley 2009-2014
“Monte Carlo denoising” inspired raytracing offline, real-time
At UCSD since Jul 2014: Director, Center for Visual Computing
Awards for research: White House PECASE (2008),
SIGGRAPH Significant New Researcher (2007), ACM Fellow
https://www.youtube.com/watch?v=qpyCXgXGe7I|
Computer Graphics online MOOC (CSE 167x) finalist for two
edX Prizes. Will use CSE 168 MOOC on UCSD Online as a
feedback system, first full use of public MOOC in local class

Rendering: 1960s (visibility)

Roberts (1963), Appel (1967) - hidden-line algorithms
Warnock (1969), Watkins (1970) - hidden-surface
Sutherland (1974) - visibility = sorting

MR S
Images from FvDFH, Pixar’ s Shutterbug
Slide ideas for history of Rendering courtesy Marc Levoy

Goals

Systems: Write a modern 3D image synthesis
program (path tracer with importance sampling)

Theory: Mathematical aspects and algorithms
underlying modern physically-based rendering

Topics: Other modern topics like image-based,
real-time, precomputed, volumetric rendering

This course is not about the specifics of 3D
rendering software like PBRT, Mitsuba etc. New,
we optionally encourage OptiX, a real-time
raytracing API for NVIDIA GPUs

Course Staff

Ravi Ramamoorthi,

Teaching Assistants:
Alex Kuznetsov (will also maintain feedback servers)
[a1kuznet@eng.ucsd.edu]
Mohammad Shafiei [moshafie@eng.ucsd.edu]
Please see piazza for their zoom ids

Rendering: 1970s (lighting)

1970s - raster graphics
Gouraud (1971) - diffuse lighting, Phong (1974) - specular lighting
Blinn (1974) - curved surfaces, texture
Catmull (1974) - Z-buffer algorithm (2020 Turing Award)

Rendering (1980s, 90s: Global lllumination) Why Study Computer Graphics Rendering?

carly 1980s - global illumination Applications (Movies, Games, Digital Advertising,
Whitted (1980) - ray tracing Lighting Simulation, Digital Humans, Virtual Reality)
Goral, Torrance et al. (1984) radiosity
Kajiya (1986) - the rendering equation, path tracing
(this is what this course is about, modern rendering)

Fundamental Intellectual Challenges
Create photorealistic virtual world
Understand physics and computation of light transport
Physically-based rendering has replaced ad-hoc
approaches in industry (offline ~ 2011, real-time ~2018)

Beautiful Imagery: Realistic Computer Graphics
2020 Turing Award given for CGl in Filmmaking

Assume taken CSE 167 or equivalent (+done well)
This is a challenging course, work starts immediately
(First 2 weeks on raytracing may be review for some)

Image Synthesis Examples From UCB CS 294 a decade ago

Collage from 2007

CSE 168 Contest 2007: Butterfly CSE 168 Spring 2020

"ry 4
s .
=P

Mies House: Swimming Pool

This is a Modernized Course

Teach Modern Physically-Based Rendering and Path
Tracing, as used in industry (Prof. consulted with Pixar on
change to physically-based shading, importance sampling
in 2011, written many key papers; consults NVIDIA)

Emphasis on step-by-step development, get it right (lots of
subtle math, compare to reference solutions)

Focus on offline but discuss real-time, image-based, PRT
Homework starts right away, due in 2 weeks

New developments: NVIDIA OptiX ray-tracing API like
OpenGL, since 2018 RTX cards 10G rays/second

Encourage (but optional) use of OptiX. If you use this,
setup yourself but basic skeleton provided. Or really slow.

Demo of UCSD Online, Feedbacks

Logistics

Website has most of the

information (look at it carefully)

We will be leveraging full MOOC infrastructure (use public MOOC)
Please join course course on UCSD Online: DEMO
Compulsory for most assignments, feedback systems
Must still submit “official” CSE 168 assignment (see website)
Please do ask us if you are confused; we are here to help
No required texts; optional PBRT book, Digital Image Synthesis
Office hours: after class (Tu/Thu 11-12) but change zoom ID

Course newsgroup on Piazza, or can use UCSD online directly

Website for late, collaboration policy (groups of 2), etc

Do try to attend class sessions on zoom (will record, post, post previous)

Questions? (Try various ways in zoom, unmute, chat, raise hands etc)

Innovation: Feedback Servers

Feedback/Grading servers for homeworks 1-4

Submit images, compare to original
Program generates difference images, report url
Can get feedback multiple times; submit final url
All run on edX edge

“Feedback” not necessarily grading
Can run extra test cases, look at code, grade fairly
But use of feedback servers/edX edge is mandatory
Experimental for this course; unlike 167 results not
deterministic, will give information re noise/variance
Can use any laptop/desktop, do it offline or in OptiX

Will test out with HW 1 images

Workload

Lots of fun, rewarding but may involve significant work
We will do our best to be supportive under the circumstances

5 programming projects; almost all are time-consuming.
Can be done in groups of two. START EARLY !!

Graded entirely on programming, weights on website
Ignore weighting on UCSD online; we weight as on CSE 168 site

Prerequisites: CSE 167, did well, enjoyed it

First homework last assignment in my CSE 167
Little bit of sink or swim to continue in course (but we will also
provide OptiX, embree references after assignment is due)
But not everyone has done a raytracer before, some additional
requirements for those who have already done one

Should be a difficult, but fun and rewarding course

Quick Inclusion Note CSE 168 is only a first step

Since | do occasionally get asked this question: If you enjoy CSE 168 and do well:
You are welcome to take this course if color-blind In Spring: CSE 190 (VR course; Schulze)

Let me know if | create too many red-green metamers . . .
Some of the best-known computer graphics Next winter: CSE 165 (3DUI), 169 (Animation)

researchers have been color-blind (ask re some stories) Graduate: CSE 272, 274 (Topics), many 291s

And for most other vision issues
We’ve even had computer graphics award winners who
have been extremely nearsighted (legally blind)

To Do Effects needed for Realism

Make sure zoom works
{re 2oom W (Soft) Shadows

Look at website
WEDS Reflections (Mirrors and Glossy)

Various policies for course. E-mail if confused.
lous polict . o . Transparency (Water, Glass)

Si for UCSD Online, Pi tc.
'gn up for fine, Flazza, ete Interreflections (Color Bleeding)

ki i ts if t. All d
Skim assignments if you wan are reacy Complex lllumination (Natural, Area Light)

Assi t 1, Due Apr 12 bsite). o : :
ssignmen ue Apr 12 (see website) Realistic Materials (Velvet, Paints, Glass)

A tions?
ny questions And many more

Start now with raytracing lecture

Ray Tracing
Different Approach to Image Synthesis as
compared to Hardware pipeline (OpenGL)

Pixel by Pixel instead of Object by Object

Easy to compute shadows/transparency/etc

Image courtesy Paul Heckbert 1983

Outline Ray Tracing: History

History Appel 68

Basic Ray Casting (instead of rasterization) Whitted 80 [recursive ray tracing]
Comparison to hardware scan conversion Landmark in computer graphics
Shadows / Reflections (core algorithm) Lots of work on various geometric primitives
Optimizations Lots of work on accelerations
Current Research

Current Research Real-Time raytracing (historically, slow technique)
Ray tracing architecture

Ray Tracing History Ray Tracing History

Ray Tracing in Computer Graphics Ray Tracing in Computer Graphics

Appel 1968 - Ray casting “An improved
lllumination model
for shaded display,”
2. Check for shadows by sending a ray to the light T. Whitted,

Vo CACM 1980

1. Generate an image by sending one ray per pixel

Resolution:
512 x 512
Time:
VAX 11/780 (1979)
74 min.
PC (2006)
6 sec. M &=
Spheres and Checkerboard, T. Whitted, 1979

CS348B Lecture 2 Pat Hanrahan, Spring 2009 C83468 Lecture 2 Pat Hanrahan, Spring 2009

From SIGGRAPH 18 Outline

History

Basic Ray Casting (instead of rasterization)
Comparison to hardware scan conversion

Shadows / Reflections (core algorithm)
Optimizations

Current Research

Real Photo: Instructor and Turner Whitted at SIGGRAPH 18

Ray Casting

Produce same images as with OpenGL
Visibility per pixel instead of Z-buffer
Find nearest object by shooting rays into scene
Shade it as in standard OpenGL

Comparison to hardware scan-line

Per-pixel evaluation, per-pixel rays (not scan-convert
each object). On face of it, costly

But good for walkthroughs of extremely large models
(amortize preprocessing, low complexity)

More complex shading, lighting effects possible

Finding Ray Direction

Goal is to find ray direction for given pixel i and j

Many ways to approach problem
Objects in world coord, find dirn of each ray (we do this)
Camera in canonical frame, transform objects (OpenGL)
Basic idea

Ray has origin (camera center) and direction
Find direction given camera params and i and j

Camera params as in gluLookAt
Lookfrom[3], LookAt[3], up[3], fov

Ray Casting

Virtual Viewpoint

Virtual Screen Objects

Outline in Code
Image Raytrace (Camera cam, Scene scene, int width, int height)
{
Image image = new Image (width, height) ;
for (inti=0;i<height; i++)
for (intj=0;j < width ; j++) {
Ray ray = RayThruPixel (cam, i, j) ;
Intersection hit = Intersect (ray, scene) ;
imageli][j] = FindColor (hit) ;
}

return image ;

Similar to gluLookAt derivation

gluLookAt(eyex, eyey, eyez, centerx, centery, centerz, upx,
upy, upz)

Camera at eye, looking at center, with up direction being up

Up vector

From 167 lecture on deriving gluLookAt

Constructing a coordinate frame?

We want to associate w with a, and v with b
But a and b are neither orthogonal nor unit norm
And we also need to find u

a
W=r—

5

bxw
u= 22
[loxw|

V=wXu

From 167 basic math lecture - Vectors: Orthonormal Basis Frames

Canonical viewing geometry

au+ fv-w

ray = eye+tm

a:tan(foﬂ /—(Wldth/Z)] ﬁ:tan(favy]x[(helght/Z)—l]

2 ‘X\ width [2 2 height | 2

Ray/Object Intersections

Heart of Ray Tracer
One of the main initial research areas
Optimized routines for wide variety of primitives

Various types of info
Shadow rays: Intersection/No Intersection
Primary rays: Point of intersection, material, normals
Texture coordinates

Work out examples
Triangle, sphere, polygon, general implicit surface

Camera coordinate frame

_a yo Pxw
&l [loxw|

We want to position camera at origin, looking down —Z dirn

V=wXu

Hence, vector a is given by eye — center

The vector b is simply the up vector
Up vector

Outline in Code

Image Raytrace (Camera cam, Scene scene, int width, int height)

{
Image image = new Image (width, height) ;
for (inti=0;i<height; i++)
for (intj=0;j < width ; j++) {

Ray ray = RayThruPixel (cam, i, j) ;
Intersection hit = Intersect (ray, scene) ;
imageli][j] = FindColor (hit) ;
}

return image ;

Ray-Sphere Intersection
ray =P=P

sphere=(P-C)«(P-C)-r?=0

Ray-Sphere Intersection

ray =P=P+Pt

sphere=(P-C)«(P-C)-r?=0
Substitute

Simplify

t2(P,+P)+2t B, +(P,—C)+(P,-C)+ (P, C)-

Ray-Sphere Intersection

Intersection point: ray = P=P +Pt

Normal (for sphere, this is same as coordinates
in sphere frame of reference, useful other tasks)
p-C
normal = ——
P-¢]

Ray-Triangle Intersection

One approach: Ray-Plane intersection, then
check if inside triangle

Plane equation:

plane=P<fi—A+i=0
Combine with ray equation:

Ray-Sphere Intersection
t2(P,«P)+2t P,+«(P,—C)+(P,~C)+(P,~C)-r?

Solve quadratic equations for t @
2 real positive roots: pick smaller roo
Both roots same: tangent to sphere /@
One positive, one negative root: ray
origin inside sphere (pick + root) @
Complex roots: no intersection check O

discriminant of equation first)

Ray-Triangle Intersection
One approach: Ray-Plane intersection, then
check if inside triangle

Plane equation:

plane=P+fi—A+i=0

Ray inside Triangle

Once intersect with plane, still need to find if in
triangle

Many possibilities for triangles, general polygons
(point in polygon tests)

We find parametrically [barycentric coordinates]. Also

useful for other applications (texture mapping)
B
P=aA+pB+yC
20,420,720
o+p+y=1

Ray inside Triangle

P=aA+pBB+yC
20,20,y2>0
o+f+y=1

P-A=B(B-A)+y(C-A)
0<pB<1,0<y<1
B+y <1

Ray Scene Intersection

Intersection FindIntersection(Ray ray, Scene scene)

min_t = infinity
min_primitive = NULL
For each primitive in scene {
t = Intersect(ray, primitive);
if (t> 0 && t < min_t) then
min_primitive = primitive
min_t=t

Ray-Tracing Transformed O

We have an optimized ray-sphere test
But we want to ray trace an ellipsoid...

Solution: Ellipsoid transforms sphere
Apply inverse transform to ray, use ray-sphere
Allows for instancing (traffic jam of cars)
Same idea for other primitives

Other primitives

Much early work in ray tracing focused on ray-
primitive intersection tests

Cones, cylinders, ellipsoids

Boxes (especially useful for bounding boxes)
General planar polygons

Many more

Consult chapter in Glassner (handed out) for
more details and possible extra credit

Transformed Objects

E.g. transform sphere into ellipsoid

Could develop routine to trace ellipsoid
(compute parameters after transformation)

May be useful for triangles, since triangle after
transformation is still a triangle in any case

But can also use original optimized routines

Transformed Objects

Consider a general 4x4 transform M
Will need to implement matrix stacks like in OpenGL

Apply inverse transform M-! to ray
Locations stored and transform in homogeneous
coordinates
Vectors (ray directions) have homogeneous coordinate
set to 0 [so there is no action because of translations]

Do standard ray-surface intersection as modified

Transform intersection back to actual coordinates
Intersection point p transforms as Mp
Distance to intersection if used may need recalculation
Normals n transform as M-n. Do all this before lighting

Outline

History

Basic Ray Casting (instead of rasterization)
Comparison to hardware scan conversion

Shadows / Reflections (core algorithm)
Optimizations

Current Research

Shadows: Numerical Issues

* Numerical inaccuracy may cause intersection to be
below surface (effect exaggerated in figure)

* Causing surface to incorrectly shadow itself
» Move a little towards light before shooting shadow ray

x

Lighting Model

Similar to OpenGL

Lighting model parameters (global)
Ambientrg b
Attenuation const linear quadratic
— LH
" const+lin* d + quad * d*

Per light model parameters
Directional light (direction, RGB parameters)
Point light (location, RGB parameters)

Light Source

Virtual Viewpoint

Virtual Screen Objects

Shattowrsgyddigibhisistibcked: objethisishadow

Image Raytrace (Camera cam, Scene scene, int width, int height)

{

Outline in Code

Image image = new Image (width, height) ;
for (inti=0;i<height; i++)
for (intj=0;j < width ; j++) {
Ray ray = RayThruPixel (cam, i, j) ;
Intersection hit = Intersect (ray, scene) ;
imagel[i][j] = FindColor (hit) ;
}

return image ;

Material Model

Diffuse reflectance (r g b)
Specular reflectance (r g b)
Shininess s

Emission (r g b)

All as in OpenGL

10

Shading Model

I=K, +K, + 2 L, (K, max (I, »n,0)+ K_(max(h, - n,0))°)

i=1
Global ambient term, emission from material
For each light, diffuse specular terms
Note visibility/shadowing for each light (not in OpenGL)

Evaluated per pixel per light (not per vertex)

Recursive Ray Tracing

For each pixel
Trace Primary Eye Ray, find intersection

Trace Secondary Shadow Ray(s) to all light(s)
Color = Visible ? lllumination Model : 0 ;

Trace Reflected Ray
Color += reflectivity * Color of reflected ray

Problems with Recursion

Reflection rays may be traced forever
Generally, set maximum recursion depth

Same for transmitted rays (take refraction into
account)

Mirror Reflections/Refractions

Virtual Viewpoint

Virtual Screen Objects
Generate reflected ray in mirror direction,
Get reflections and refractions of objects

Recursive Shading Model

I=K,+K, + 2 LK, max (I, «n,0)+ K (max(h, - n,0)))

=
Highlighted terms are recursive specularities [mirror
reflections] and transmission (latter is extra credit)

Trace secondary rays for mirror reflections and
refractions, include contribution in lighting model

GetColor calls RayTrace recursively (the | values in
equation above of secondary rays are obtained by
recursive calls)

Turner Whitted 1980

11

Effects needed for Realism

(Soft) Shadows

Reflections (Mirrors and Glossy)
Transparency (Water, Glass)
Interreflections (Color Bleeding)

Complex lllumination (Natural, Area Light)
Realistic Materials (Velvet, Paints, Glass)

Discussed in this lecture

Not discussed but possible with distribution ray tracing

Hard (but not impossible) with ray tracing; radiosity methods
All are possible with path tracing developed in this course

Outline

History

Basic Ray Casting (instead of rasterization)
Comparison to hardware scan conversion

Shadows / Reflections (core algorithm)
Optimizations

Current Research

Acceleration Structures

Bounding boxes (possibly hierarchical)
If no intersection bounding box, needn’ t check objects

Bounding Box

Spatial Hierarchies (Oct-trees, kd trees, BSP trees)

Some basic add ons

Area light sources and soft shadows: break into
grid of n x n point lights
Use jittering: Randomize direction of shadow ray
within small box for given light source direction
Jittering also useful for antialiasing shadows when
shooting primary rays

More complex reflectance models
Simply update shading model
But at present, we can handle only mirror global
illumination calculations

Some of these required for those who have
already done a raytracer (167 with Chern or me)

Acceleration

Testing each object for each ray is slow
Fewer Rays
Adaptive sampling, depth control
Generalized Rays
Beam tracing, cone tracing, pencil tracing etc.
Faster Intersections
Optimized Ray-Object Intersections
Fewer Intersections

Ray Tracing Acceleration Structures

Bounding Volume Hierarchies (BVH)
Uniform Spatial Subdivision (Grids)
Binary Space Partitioning (BSP Trees)

Axis-aligned often for ray tracing: kd-trees

Conceptually simple, implementation a bit tricky
Lecture relatively high level: Start early
Remember that acceleration a small part of grade
But will struggle in future if developing in software

12

Bounding Volume Hierarchies 1

+ Build hierarchy of bounding volumes
o Bounding volume of interior node contains all children

|

Bounding Volume Hierarchies 3

+ Sort hits & detect early termination

FindIntersection(Ray ray, Node node)
¢
t
// Find intersections with child node bounding volumes

// Sort intersections front to back

// Process intersections (checking for early termination)
min_t = infinity;
for each intersected child i {

if (min_t < bv_t[i]) break;

shape_t = FindIntersection(ray, child);

if (shape_t < min_t) { min_t = shape_t:}

1
5

return min_t;

Acceleration and Regular Grids

Simplest acceleration, for example 5x5x5 grid
For each grid cell, store overlapping triangles

March ray along grid (need to be careful with
this), test against each triangle in grid cell

More sophisticated: kd-tree, oct-tree bsp-tree

Or use (hierarchical) bounding boxes

Try to implement some acceleration in HW

Bounding Volume Hierarchies 2

» Use hierarchy to accelerate ray intersections
o Intersect node contents only if hit bounding volume

CNCRG

AN O 7

Acceleration Structures: Grids

Note on Optix, Code Reuse

No Copying Code previous students, solutions,
or any online resources

No posting code online including to github

Some students felt skeleton only for OptiX unfair
And in spring 20 tried copying to compensate. Bad!!

Optix skeleton only Optix setup, no raytracing
Because writing from scratch in new language is hard
Acceleration structures are built-in, can use
Still likely harder option, because of learning curve
(but great performance for course)

13

Uniform Grid: Problems

» Potential problem:
o How choose suitable grid resolution?

Too little benefit

if grid is too coarse

Too much cost

if grid is too fine

Octree traversal

+ Trace rays through neighbor cells
o Fewer cells
o More complex neighbor finding

Trade-off fewer cells for

more expensive traversal

Bounding Box Test

Ray-Intersection is simple coordinate check
Intricacies with test, see Shirley book

Hierarchical Bounding Boxes

Octree

+ Construct adaptive grid over scene
o Recursively subdivide box-shaped cells into 8 octants
o Index primitives by overlaps with cells

(e
E

Generally fewer cells I

Math of 2D Bounding Box Test

Can you find a t in range =

t>0

t

ymin

ift >t

xmin = 'ymax ymin = xmax
returnfalse;

else t
returntrue;

t

xmin ymin "ymax

No intersection if x and y ranges don’ t overlap

Hierarchical Bounding Box Test

If ray hits root box
Intersect left subtree
Intersect right subtree
Merge intersections (find closest one)

Standard hierarchical traversal
But caveat, since bounding boxes may overlap

At leaf nodes, must intersect objects

14

Creating Bounding Volume Hierarchy

function bvh-node::create (object array A, int AXIS)
N = A.length() ;
if (N == 1) {left = A[0]; right = NULL; bbox = bound(A[0]);}
else if (N == 2) {
left = A[0] ; right = A[1] ;
bbox = combine(bound(A[0]),bound(A[1])) ;
else
Find midpoint m of bounding box of A along AXIS
Partition A into lists of size k and N-k around m
left = new bvh-node (A[O...k],(AXIS+1) mod 3) ;
right = new bvh-node(A[k+1...N-1],(AXIS+1) mod 3);
bbox = combine (left -> bbox, right -> bbox) ;

From page 305 of Shirley book

Uniform Spatial Subdivision

Different idea: Divide space rather than objects

In BVH, each object is in one of two sibling nodes
A point in space may be inside both nodes

In spatial subdivision, each space point in one node
But object may lie in multiple spatial nodes

Simplest is uniform grid (have seen this already)
Challenge is keeping all objects within cell

And in traversing the grid

BSP Trees

Used for visibility and ray tracing
Book considers only axis-aligned splits for ray tracing
Sometimes called kd-tree for axis aligned

Split space (binary space partition) along planes
Fast queries and back-to-front (painter’ s) traversal

Construction is conceptually simple
Select a plane as root of the sub-tree
Split into two children along this root
Random polygon for splitting plane (may need to split
polygons that intersect it)

BSP slides courtesy Prof. O’ Brien

Area Heuristics

Instead of mid-point of bounding box, alternating axes,
pick the axis and the location to split carefully

The algorithm can test several splitting planes (at least 9
recommended) across x,y,z and chooses best one

Area Heuristic: min an, +a,n,considering areas of each
child box and number of primitives contained in each

Longer for construction but better balanced
Ideally speeds up raytracing (in Optix BVH built in)

(Optional, but if interested read up on Surface Area
Heuristic [SAH] and similar methods. Also see fast
updates for animations, dynamic scenes)

Traversal of Grid High Level

Fast algo. possible

(more on board)

Initial State

15

First Split

Third Split

Final BSP Tree

Second Split

Fourth Split

BSP Trees Cont’ d

Continue splitting until leaf nodes

Visibility traversal in order
Child one
Root
Child two

Child one chosen based on viewpoint
Same side of sub-tree as viewpoint

BSP tree built once, used for all viewpoints

16

Outline

Other Accelerations

Screen space coherence
o Check last hit first

History

o Beam tracing o oo Basic Ray Casting (instead of raster_lzatlon)
)) s Pl oNe Lo Comparison to hardware scan conversion
o Pencil tracing s Bl e
o Cone tracing o o Shadows / Reflections (core algorithm)
* Memory coherence o e Optimizations
o Large scenes Current Research

+ Parallelism
o Ray casting is “embarassingly parallelizable”

+ etc.

Interactive Raytracing

e — ’ ‘ Ray tracing historically slow
-
|

Now viable alternative for complex scenes
Key is sublinear complexity with acceleration;
need not process all triangles in scene

Optix 6, RTX chips 10G+ rays per second).

\ %\\\ BRI Vo Allows many effects hard in hardware
..\& b W/ = % Today graphics hardware and software (NVIDIA
) Y Q7
= 7 \ <

\E

== Ring - Stencil Routing == Cornell Box - Bitonic Sort

Raytracing on Graphics Hardware

Modern Programmable Hardware general
streaming architecture

Can map various elements of ray tracing 8505121384, 16K potons
Kernels like eye rays, intersect etc.
In vertex or fragment programs i -
Convergence between hardware, ray tracing

[Purcell et al. 2002, 2003]

http://graphics.stanford.edu/papers/photongfx

Glass Ball - Stencil Routing Cornell Box - Increased Search Radius _

17

