To Do

Computer Graphics II: Rendering Homework 2 (Direct Lighting) due Apr 24

CSE 168 [Spr 20], Lecture 8: Indirect Lighting Details Homework 3 (Path Tracer, Indirect Lighting) May 7
Ravi Ramamoorthi Assignment is on edX edge

START EARLY

This lecture goes through details of indirect lighting,
Monte Carlo path tracing for the assignment

http://viscomp.ucsd.edu/classes/cse168/sp20

Ask re any questions

Indirect Lighting Indirect Lighting
Core of path tracing, global illumination Core of path tracing, global illumination
Supports multiple bounces of light, color bleeding Supports multiple bounces of light, color bleeding

General paths, general visual effects General paths, general visual effects
» -—

Light Source (0 bounces) Direct Lighting (1 bounce) Indirect Lighting (2 bounces) Indirect Lighting (3 bounces)|

Full Scene Direct Lighting Indirect Lighting

Indirect Lighting Rendering Equation (Kajiya 86)

Core of path tracing, global illumination

Supports multiple bounces of light, color bleeding

General paths, general visual effects

[Figure 6. A sample image. All objects are neatral grey. Color on the objec
due o cauntica from the green ghase balls and color bleeding from the b
polygon.

Paper introduced rendering equation, path tracing, importance sampling still used today

Reflection Equation

Replace sum with integral
L(x,e)=L(x0)+ _[L (x,a)f(x,o,®,)cos6dw,
Q

Reflected Light ~ Emission - Incident

BRDF Cosine of
(Output Image)

Light (from Incident angle
light source)

Rendering Equation

Assignment: slight change in notations
L(x0,)=L(x0,)+ J. L (t(x,0,),~0,)f(x,0,0,)no,)do,
Q

x'=t(x,m,)is the raycasting function to first intersection
Monte Carlo estimator (hemisphere, not area light)
Randomly generate sample on hemisphere (total 21 steradians)

L (x0,)=L,(x0,)+ % i L (t(x,0,(k)),~,(k))f(x,0,(k),0,)(n-o,(k))

Not ideal; each L, call recursively estimated
Can lead to exponential growth in samples, termination condition
Set fixed depth D = 5 to guarantee termination for now

Instead, consider single path without splitting
N = 1 after primary visibility or first bounce (all N for first bounce)
Actually render N images, average (Single path vs “bushy tree”)

Sampling Upper Hemisphere

Uniform directional sampling: how to generate
random ray on a hemisphere?

Option #1: rejection sampling
Generate 3 random numbers (x,y,z), with x,y,z in —1..1
If x2+y2+z2 > 1, reject
Normalize (x,y,z)

If pointing into surface (ray dot n < 0), flip to -ray

Rendering Equation
Surfaces (interreflection)

L(x,0)=L(x0)+ J L (X,—o)f(x,m,®,)cosfdm,
Q

Reflected Light ~ Emission

(Output Image)

UNKNOWN

Reflected BRDF Cosine of
Light Incident angle
KNOWN UNKNOWN KNOWN KNOWN

Path Construction
Single path vs bushy tree

Conceptually simplest to render N 1-sample images
And then average them

Antialiasing within pixel for “free” (consider pixel having unit
area, jitter ray in that, instead of shooting through midpoint)

il el

Sampling Upper Hemisphere

Option #2: inversion method
In polar coords, density must be proportional to sin 6

(remember d(solid angle) = sin 6 d0dg)
Integrate, invert = cos™'

Recipe is (start with two random numbers §; &,in 0...1)
Generate ¢ in 0..2n ¢$=2n&,
Generate zin 0.1 z=g,
Let®=cos'z 6=acos(&,)
(x,y,2) = (sin 6 cos ¢, sin @sin ¢, cos 6)

Rotate according to surface normal (z goes to normal)
Normal is (a,B) with a = acos(n,) and B=atan2(n, n,)
Rotation matrix R = R,(B)R,(a) then do R*(x,y,z)

Sampling Upper Hemisphere Or Create Local Coordinate Frame
Simpler, may be useful for texture etc.
Can use any one of 3 methods (rejection, rotation,

Two random numbers &, €,in 0...1 coordinate frame but assignment spec coord. frame)
1, 62

Generate ¢ in 0.2 $=2n¢&, \ : { ||u||: ||VH= ||W|| =1
Generate zin 0.1 z=¢, /
Let 6= cos'z 6=acos(&,) Usv=vew=u.w=0
(x,y,2) = (sin 6 cos ¢, sin Osin ¢, cos 6) T
Rotate according to surface normal (z goes to normal)
Normal is (a,B) with a = acos(n,) and B=atan2(n, n,)
Rotation matrix R = RZ(B)Ry(a) then do R*(x,y,z)
cosff -sinff 0 cosa 0 sina [cos acos B —sinpB sinacosf
R=| sinf cosB 0 0 1 0 =| sinfcosa cosf sinasinf
0) 1 -sinac 0 cosa | -—sina 0

p=(peu)u+(pev)v+(psww

Associate w with normal (+z = n). Need u, v

cos o

Create Local Coordinate Frame Assignment so far (checkpint 1)

First, compute u,v,w to create orthonormal frame Sample hemisphere at each bounce
Vector a is arbitrary (use random or up vector) ’ . _
Be careful when a close to n, use alternative vector =CElLEiS WA estmEEriin) = 1 (€ eaen @y
’ Upto depth D = 5. Final ray D = 5 returns emit L, only
Most rays will actually be 0 (do not hit light source)
Very inefficient, but render this, will improve on it next

Now, compute ray direction w
(x,y,z) are scalar coordinates; u,v,w are vectors above

® = XU+ YV +ZW

1 sample per pixel

64 samples per pixel (may be slow)

Separating Direct/Indirect

Also called next event estimation (NEE)

Already know how to do direct (homework 2)
By sampling/integrating area light source
But vanilla path tracing previously is very inefficient
Chance of hitting the light source is very small

So separate direct and indirect
Estimate “next event” on light source for direct
Focus energies on “hard” indirect light vs “easy” direct

Simplest of variance reduction methods
Monte Carlo Path tracing always works, is gold standard
But challenge is making it fast, removing noise

Separating Direct/Indirect: Notes

L,(x,wo):j L., (x0,)(x0,0,)(no,)do,

ind

= %i L, (t(x,,(k)),~,(k))f (x,0,(k),0,)n-o,(k))
Note that Loiabove = L4 *+ L, only(not L,: no emission)

Implementation

At each intersection in path tracer, execute direct lighting
For simplicity, only one (unstratified) ray for each area light
Ultimately, we will average many primary samples

Add in emission where appropriate (light sources only)

Execute indirect lighting above (randomly sample path)

To avoid double counting, indirect rays don’t see emission
If an indirect ray ever strikes a light source, terminate immediately
Without accumulating the light source’s emission

1 sample per pixel (no NEE)
|

Separating Direct/Indirect

Formally split incident light at a point Lxe) =L, (xe)+L,(xo,

Reflected light has emission, direct, indirect

L (x0,)=L(x0,)+L,(x0,)+L(x0,)
Emission is easy, and we already know direct
N
L,(x0,)= Le%z f(x,0,(k),0,) G(X,X,) V(X,X,)
k=1

Indirect is now evaluated by path tracing
L(x0,)= I L,.(x0)(x,0,0,)(n.o,)do,

= %i L (t(x,0,(k)),—o,(K))f(x,0,(k),0,)(n-o,(K))

Implementation: Corner Cases

Emission from first intersected surface (light sources)
should be added, but no emission on subsequent bounces

Since next event estimation / direct light effectively extends
path by a bounce, trace indirect ray to depth D - 1

Render Cornell box 1 spp, 64 spp D = 5, single unstratified
direct light sample per intersection

1 sample per pixel (with NEE)

64 samples per pixel (with NEE)

64 samples per pixel (without NEE)

Russian Roulette Termination

Terminate path with some probability g
If terminated, obviously throughput is 0
If left alive, multiply (boost) throughput T by 1/(1-q)
Create fewer higher-energy paths (e.g. if g = 0.1, 10
equal paths reduces to 9 (expected) each 10/9 energy. If
instead q = 0.9, reduce to 1 path with 10 times energy)

Russian Roulette
Clipping to fixed depth D undesirable

Leads to bias, some complex paths need high D
Continue ray even when throughput is very small

In practice, rays may terminate if exit scene, but this can’t
formally be guaranteed (hall of mirrors, closed box)

Russian roulette unbiased at infinite depth
Terminate (probabilistically) low throughput paths
Increase energy of paths kept alive

Keep total energy constant, unbiased (0*q + (1-q)/(1-q))
Probability g controls how aggressive termination
(depends on throughput, can increase variance)

VA AN W \/

Withcut Russian roulette. With Russian roulette With Russian roulette. 5 paths with q = 0.2
Path continued and Poth terminated. Onty cne Tpected to terminate,
throughput boosted.

09 the other paths are boosted Sightly

Choosing Probability Russian Roulette Images

Choose probability g inversely on throughput
g =1-min(max(T,T,.T,),1) =

Russian Roulette applied (only) in indirect
Determine direct (and emission on first bounce) as usual
(no boosting or termination is applied)
Then find throughput for ray so far (BRDF, cosine, 21
terms product each bounce), pick random number in 0...1
If number < q terminate (no indirect ray is shot)
Otherwise, boost throughput by 1/(1-q), shoot indirect

D =5, 16 samples D = infinity, 16 samples

