Computer Graphics II: Rendering

CSE 168 [Spr 20], Lecture 7: Monte Carlo Path Tracing
Ravi Ramamoorthi

http://viscomp.ucsd.edu/classes/cse168/sp20

Motivation

General solution to rendering and global illumination
Suitable for a variety of general scenes
Based on Monte Carlo methods

Enumerate all paths of light transport

Monte Carlo Path Tracing

1000 paths/pixel

To Do

Homework 2 (direct lighting) due in a few days

Next assignment path tracing (on edX edge).
This lecture covers much of that material

Monte Carlo Path Tracing

Monte Carlo Path Tracing

Advantages
Any type of geometry (procedural, curved, ...)
Any type of BRDF (specular, glossy, diffuse, ...)
Samples all types of paths (L(SD)*E)
Accuracy controlled at pixel level
Low memory consumption
Unbiased - error appears as noise in final image

Disadvantages (standard Monte Carlo problems)
Slow convergence (square root of number of samples)
Noise in final image

Monte Carlo Path Tracing

Integrate radiance Specular
for each pixel Surjace
by sampling paths

randomly

Diffuse Surface
LO(X,VT/) = Le(X,W) + Jﬁ(x W’,VT/)LI (X, W)(W’ e n)dw

Sampling Techniques

Problem: how do we generate random points/directions
during path tracing and reduce variance?

Importance sampling (e.g. by BRDF)
Stratified sampling
Eye
O,

Surface

Simplest Monte Carlo Path Tracer

For each pixel, cast n samples and average
Choose a ray with p=camera, d=(6,$) within pixel
Pixel color += (1/n) * TracePath(p, d)

TracePath(p, d) returns (r,g,b) [and calls itself recursively]:
Trace ray (p, d) to find nearest intersection p”
Select with probability (say) 50%:

Emitted:

return 2 * (Le g, Leyreen, Leye) // 2 = 1/(50%)
Reflected:

generate ray in random direction d”

return 2 * f(d »d’) * (n*d”’) * TracePath(p’, d”)

Simple Monte Carlo Path Tracer

Step 1: Choose a ray (u,v,6,¢) [per pixel]; assign weight = 1
Step 2: Trace ray to find intersection with nearest surface

Step 3: Randomly choose between emitted and reflected light
Step 3a: If emitted,
return weight” * Le
Step 3b: If reflected,
weight’’ *= reflectance
Generate ray in random direction
Go to step 2

Outline

Motivation and Basic Idea
Implementation of simple path tracer
Variance Reduction: Importance sampling
Other variance reduction methods

Specific 2D sampling techniques

Simplest Monte Carlo Path Tracer

For each pixel,
Choose a ray with p=camera, d=(6,$) within pixel
Pixel color +=

TracePath(p, d) returns (r,g,b) [and calls itself recursively]:
Trace ray (p, d) to find nearest intersection p”
Select with probability (say) 50%:

Emitted:

return 2 * (Le g, Leyreen, Ley1e) // 2 = 1/(50%)
Reflected:

generate ray in random direction d”

return 2 * f(d d’) * (n*d”’) * TracePath(p’, d”)

Simplest Monte Carlo Path Tracer Simplest Monte Carlo Path Tracer

For each pixel, cast n samples and average
Choose a ray with p=camera, d=(6,4) within pixel
Pixel color += (1/n) * TracePath(p, d)

For each pixel, cast n samples and average
Choose a ray with p=camera, d=(6,$) within pixel
Pixel color += (1/n) * TracePath(p, d)

TracePath(p, d) returns (r,g,b) [and calls itself recurswely]
Trace ray (p, d) to find nearest intersection p
Select with probability (say) Weight = 1/probability

Remember: unbiased
Emitted: requires having f(x) / p(x)
return 2 * (Le o4, Leyeerm Leo1e) // 0°
Reflected:
generate ray in random direction d”
return 2 * f(d »d’) * (n*d’) * TracePath(p’, d”)

TracePath(p, d) returns (r,g,b) [and calls itself recursively]:
Trace ray (p, d) to find nearest intersection p”
Select with probability (say) 50%:

Emitted:
return 2 * (Leeq, Legreens Leoike) // 2 = 1/(50%)

Reflected: Path terminated when
generate ray in random direction d” Il

return 2 * f(d »d’) * (n*d’) * TracePath(p’, d”)

Path Tracing

Arnold Renderer (M. Fajardo)

Works well diffuse surfaces, hemispherical light

CS3488 Lecture 14 10 paths / pixel Pat Hanrahan, Spring 2009

From CS 283(294) a few years ago Advantages and Drawbacks

Advantage: general scenes, reflectance, so on
By contrast, standard recursive ray tracing only mirrors

»—f’) i This algorithm is unbiased, but horribly inefficient
% I J Sample “emitted” 50% of the time, even if emitted=0
‘ 'T‘—‘ = Reflect rays in random directions, even if mirror
If light source is small, rarely hit it

Goal: improve efficiency without introducing bias
Variance reduction using many of the methods
discussed for Monte Carlo integration last week
Subject of much interest in graphics in 90s till today

Daniel Ritchie and Lita Cho

Outline

Motivation and Basic Idea

Implementation of simple path tracer
Variance Reduction: Importance sampling
Other variance reduction methods

Specific 2D sampling techniques

Importance Sampling

Can pick paths however we want, but

contribution weighted by 1/probability
Already seen this division of 1/prob in weights to
emission, reflectance

E(f(x))

Importance sample Emit vs Reflect

TracePath(p, d) returns (r,g,b) [and calls itself recursively]:
Trace ray (p, d) to find nearest intersection p”

Emitted:
return ()" (Lered Legreen: Lebive)
Reflected:
generate ray in random direction d”
return ()) * f(d >d’) * (n*d”) * TracePath(p’, d’)

Importance Sampling

Pick paths based on energy or expected contribution

More samples for high-energy paths
Don’t pick low-energy paths

At “macro” level, use to select between reflected vs
emitted, or in casting more rays toward light sources

At “micro” level, importance sample the BRDF to pick
ray directions

Tons of papers in 90s on tricks to reduce variance in
Monte Carlo rendering

Importance sampling now standard in production. |
consulted on Pixar’s system for upcoming movies

Simplest Monte Carlo Path Tracer

For each pixel, cast n samples and average
Choose a ray with p=camera, d=(6,$) within pixel
Pixel color += (1/n) * TracePath(p, d)

TracePath(p, d) returns (r,g,b) [and calls itself recursively]:
Trace ray (p, d) to find nearest intersection p”
Select with probability (say) 50%:

Emitted:

return 2 * (Le g, Legreens Leye) // 2 = 1/(50%)
Reflected:

generate ray in random direction d”

return 2 * f(d »d’) * (n*d’) * TracePath(p’, d”)

Importance sample Emit vs Reflect

TracePath(p, d) returns (r,g,b) [and calls itself recursively]:
Trace ray (p, d) to find nearest intersection p”

Can never be 1 unless
Emitted: Reflectance is 0
return ()" (Lereas Legreens Leoiue)
Reflected:
generate ray in random direction d”

return ()) * f(d >d’) * (nd’) * TracePath(p’, d”")

Outline

Motivation and Basic Idea
Implementation of simple path tracer
Variance Reduction: Importance sampling
Other variance reduction methods

Specific 2D sampling techniques

One Variation for Reflected Ray

Pick a light source
Trace a ray towards that light

Trace a ray anywhere except for that light
Rejection sampling

Divide by probabilities
1/(solid angle of light) for ray to light source
(1 — the above) for non-light ray
Extra factor of 2 because shooting 2 rays

More variance reduction
Discussed “macro” importance sampling
Emitted vs reflected

How about “micro” importance sampling
Shoot rays towards light sources in scene
Distribute rays according to BRDF

Russian Roulette
Maintain current weight along path
(need another parameter to TracePath)
Terminate ray iff [weight| < const.

Be sure to weight by 1/probability

Russian Roulette

Terminate photon with probability p
Adjust weight of the result by 1/(1-p)
E(X
E(X):p~0+(1—p)l‘_—p):E(X)
Intuition:
Reflecting from a surface with R=.5
100 incoming photons with power 2 W
1. Reflect 100 photons with power 1 W
2 Reflect 50 photons with power 2 W

CS348B Lecture 14 Pat Hanrahan, Spring 2009

Path Tracing: Include Direct Lighting

Step 1. Choose a camera ray r given the
(x,y,u,v,t) sample
weight = 1;
L=20
Step 2. Find ray-surface intersection
Step 3.
L += weight * Lr(light sources)
weight *= reflectance (r)
Choose new ray r’ ~ BRDF pdf(r)

Go to Step 2.
CS348B Lecture 14 Pat Hanrahan, Spring 2009

Monte Carlo Extensions

Unbiased
Bidirectional path tracing
Metropolis light transport

Biased, but consistent
Noise filtering
Adaptive sampling
Irradiance caching

Monte Carlo Extensions

Unbiased
Bidirectional path tracing
Metropolis light transport

Biased, but consistent
Noise filtering
Adaptive sampling
Irradiance caching

Monte Carlo Extensions

Unbiased
Bidirectional path tracing
Metropolis light transport

Biased, but consistent
Noise filtering
Adaptive sampling
Irradiance caching

Adaptive

Heinrich

Monte Carlo Extensions

Unbiased
Bidirectional path tracing
Metropolis light transport

Biased, but consistent
Noise filtering
Adaptive sampling
Irradiance caching

Monte Carlo Extensions

Unbiased
Bidirectional path tracing
Metropolis light transport

Biased, but consistent
Noise filtering
Adaptive sampling
Irradiance caching

Filtered

Monte Carlo Extensions

Unbiased
Bidirectional path tracing
Metropolis light transport

Biased, but consistent
Noise filtering
Adaptive sampling
Irradiance caching

RenderPark

Monte Carlo Path Tracing Image

2000 samples per pixel, 30 computers, 30 hours . <,

2D Sampling: Motivation

Final step in sending reflected ray: sample 2D domain
According to projected solid angle

Or BRDF

Or area on light source

Or sampling of a triangle on geometry

Etc.

Sampling Upper Hemisphere

Option #2: inversion method
In polar coords, density must be proportional to sin 6
(remember d(solid angle) = sin 6 d6dg)
Integrate, invert = cos™’

So, recipe is
Generate ¢ in 0..2n
Generate zin 0..1
Let 8= cos'z
(x,y,z) = (sin 6 cos ¢, sin &sin ¢, cos 6)

This is what you need to do for homework 3 (simple upper
hemisphere sampling). Anything more advanced (importance
sampling later in lecture) is extra (homework 4).

Outline

Motivation and Basic Idea
Implementation of simple path tracer
Variance Reduction: Importance sampling
Other variance reduction methods

Specific 2D sampling techniques

Sampling Upper Hemisphere

Uniform directional sampling: how to generate
random ray on a hemisphere?

Option #1: rejection sampling
Generate random numbers (x,y,z), with x,y,z in —1..1
If x2+y2+z2 > 1, reject
Normalize (x,y,z)
If pointing into surface (ray dot n < 0), flip

Sampling Projected Solid Angle

Generate cosine weighted distribution

CS348B Lecture 6 Pat Hanrahan, Spring 2004

BRDF Importance Sampling BRDF Importance Sampling

Better than uniform sampling: importance sampling For cosine-weighted Lambertian:
. o Density = cos 0sin 6
Because you divide by probability, ideally Integrate, invert & cos-(sqrt)
probability proportional to £, * cos 6,
So, recipe is:

Generate ¢ in 0..217

Generate zin 0..1

Let 6= cos™ (sqrt(z))

BRDF Importance Sampling BRDF Importance Sampling

Phong BRDF: f, ~ cos"awhere « is angle Recipe for sampling specular term:

between outgoing ray and ideal mirror direction Generate zin 0..1
Let o= cos™ (z!/(*1)
Constant scale = k,(n+2)/(27) Generate ¢, in 0..21

, A of This gives direction w.r.t. ideal mirror direction
Can’ t sample this times cos 6, e

Can only sample BRDF itself, then multiply by cos 6; Convert to (x,y,z), then rotate such that z points
That’ s OK — still better than random sampling along mirror dir.

Summary
Monte Carlo methods robust and simple (at least
until nitty gritty details) for global illumination

Must handle many variance reduction methods in
practice

Importance sampling, Bidirectional path tracing,
Russian roulette etc.

Rich field with many papers, systems researched
over last 10 years

