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Computer Graphics II: Rendering 

CSE 168 [Spr 20], Lecture 5: Monte Carlo Integration      
Ravi Ramamoorthi 

http://viscomp.ucsd.edu/classes/cse168/sp20 

To Do 

§  Homework 2 (Direct Lighting) due Apr 24 

§  Assignment is on edX edge 

§  START EARLY (NOW) 

Motivation 

Rendering = integration 
§  Reflectance equation: Integrate over incident illumination 
§  Rendering equation: Integral equation 

Many sophisticated shading effects involve integrals 
§  Antialiasing 
§  Soft shadows 
§  Indirect illumination 
§  Caustics 

Example: Soft Shadows 

Monte Carlo 

§  Algorithms based on statistical sampling and 
random numbers 

§  Coined in the beginning of 1940s.  Originally used 
for neutron transport, nuclear simulations 
§  Von Neumann, Ulam, Metropolis, … 

§  Canonical example: 1D integral done numerically 
§  Choose a set of random points to evaluate function, and 

then average (expectation or statistical average) 

Monte Carlo Algorithms 

Advantages 
§  Robust for complex integrals in computer graphics 

(irregular domains, shadow discontinuities and so on) 
§  Efficient for high dimensional integrals (common in 

graphics: time, light source directions, and so on) 
§  Quite simple to implement 
§  Work for general scenes, surfaces 
§  Easy to reason about (but care taken re statistical bias) 

Disadvantages 
§  Noisy 
§  Slow (many samples needed for convergence)  
§  Not used if alternative analytic approaches exist (but 

those are rare) 
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Outline 

§  Motivation 

§  Overview, 1D integration 

§  Basic probability and sampling 

§  Monte Carlo estimation of integrals 

 

Integration in 1D 

x=1 

f(x) 

  
f (x)dx =

0

1

∫ ?

Slide courtesy of  
Peter Shirley 

We can approximate  

x=1 

f(x) g(x) 

  
f (x)dx ≈

0

1

∫ g(x)dx
0

1

∫

Slide courtesy of  
Peter Shirley 

Standard integration methods like trapezoidal 
rule and Simpsons rule 
 
Advantages:  
•  Converges fast for smooth integrands 
•  Deterministic 

Disadvantages: 
•  Exponential complexity in many dimensions 
•  Not rapid convergence for discontinuities 

Or we can average 

x=1 

f(x) 
 E(f(x)) 

  
f (x)dx

0

1

∫ = E(f (x))

Slide courtesy of  
Peter Shirley 

Estimating the average 

x1 

f(x) 

xN 

  
f (x)dx

0

1

∫ = 1
N

f (xi )
i=1

N

∑

 E(f(x)) 

Slide courtesy of  
Peter Shirley 

Monte Carlo methods (randomly choose 
samples) 
 
Advantages:  
•  Robust for discontinuities 
•  Converges reasonably for large dimensions 
•  Can handle complex geometry, integrals 
•  Relatively simple implement, reason about 

Other Domains 

x=b 

f(x) 
 < f >ab 

x=a 

  
f (x)dx

a

b

∫ = b − a
N

f (xi )
i=1

N

∑

Slide courtesy of  
Peter Shirley 



3 

Multidimensional Domains 

Same ideas apply for integration over … 
§  Pixel areas 
§  Surfaces 
§  Projected areas 
§  Directions 
§  Camera apertures 
§  Time 
§  Paths 
 

  
f (x)dx

UGLY
∫ = 1

N
f (xi )

i=1

N

∑

Surface 

Eye 

Pixel 

x 

Outline 

§  Motivation 

§  Overview, 1D integration 

§  Basic probability and sampling 

§  Monte Carlo estimation of integrals 

Random Variables 

§  Describes possible outcomes of an experiment 

§  In discrete case, e.g. value of a dice roll [x = 1-6] 

§  Probability p associated with each x (1/6 for dice) 

§  Continuous case is obvious extension  

Expected Value 

§  Expectation 

§  For Dice example:  
  

Discrete: E(x) = pi
i=1

n

∑ xi

Continuous: E(x) = p(x)f (x) dx
0

1

∫

  
E(x) = 1

6i=1

n

∑ xi =
1
6

1+ 2+ 3 + 4 + 5 + 6( ) = 3.5

Sampling Techniques 

    Problem: how do we generate random points/
directions during path tracing? 
§  Non-rectilinear domains 
§  Importance (BRDF) 
§  Stratified 

Surface 

Eye 

x 
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Generating Random Points 

Uniform distribution: 
§   Use random number generator 
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Generating Random Points 

Specific probability distribution: 
§  Function inversion 
§  Rejection 
§  Metropolis 
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Common Operations 

Want to sample probability distributions 
§  Draw samples distributed according to probability 
§  Useful for integration, picking important regions, etc. 

Common distributions 
§  Disk or circle 
§  Uniform 
§  Upper hemisphere for visibility 
§  Area luminaire 
§  Complex lighting like an environment map 
§  Complex reflectance like a BRDF 

Generating Random Points 
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Rejection Sampling 
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Outline 

§  Motivation 

§  Overview, 1D integration 

§  Basic probability and sampling 

§  Monte Carlo estimation of integrals 
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Monte Carlo Path Tracing 

Big diffuse light source, 20 minutes 

Jensen 
Motivation for rendering in graphics: Covered in detail in next lecture 

Monte Carlo Path Tracing 

1000 paths/pixel 

Jensen 

Estimating the average 

x1 

f(x) 

xN 

  
f (x)dx

0

1

∫ = 1
N

f (xi )
i=1

N

∑

 E(f(x)) 

Slide courtesy of  
Peter Shirley 

Monte Carlo methods (randomly choose 
samples) 
 
Advantages:  
•  Robust for discontinuities 
•  Converges reasonably for large dimensions 
•  Can handle complex geometry, integrals 
•  Relatively simple implement, reason about 

Monte Carlo Integration 
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Variance 

x1 xN 

 E(f(x)) 

  
Var f (x)⎡⎣ ⎤⎦ =

1
N

[f (xi
i=1

N

∑ )−E(f (x))]2

Variance for Dice Example? 

§  Work out on board (variance for single dice roll) 

Variance 

x1 xN 

 E(f(x)) 

  
Var E(f (x))⎡⎣ ⎤⎦ =

1
N

Var f (x)⎡⎣ ⎤⎦

Variance decreases as 1/N 
Error decreases as 1/sqrt(N) 

Variance 

§  Problem: variance decreases with 1/N 
§  Increasing # samples removes noise slowly 

x1 xN 

 E(f(x)) 
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Variance Reduction Techniques 

§  Importance sampling 

§  Stratified sampling 

  
f (x)dx

0

1

∫ = 1
N

f (xi )
i=1

N

∑

Importance Sampling 

Put more samples where f(x) is bigger 

  

f (x)dx
Ω
∫ = 1

N
Yi

i=1

N

∑

Yi =
f (xi )
p(xi )

x1 xN 

 E(f(x)) 

Importance Sampling 

§  This is still unbiased 

x1 xN 

 E(f(x)) 

  

E Yi
⎡⎣ ⎤⎦ = Y(x)p(x)dx

Ω
∫

= f (x)
p(x)

p(x)dx
Ω
∫

= f (x)dx
Ω
∫

for all N 

Importance Sampling 

§  Zero variance if p(x) ~ f(x) 

x1 xN 

 E(f(x)) 

Less variance with better 
importance sampling 

  

p(x) = cf (x)

Yi =
f (xi )
p(xi )

= 1
c

Var(Y ) = 0

Stratified Sampling 

§  Estimate subdomains separately 

x1 xN 

 Ek(f(x)) 

Arvo 



9 

Stratified Sampling 

§  This is still unbiased 

  

FN = 1
N

f (xi )
i=1

N

∑

= 1
N

NiFi
k=1

M

∑

x1 xN 

 Ek(f(x)) 

Stratified Sampling 

§  Less overall variance if less variance  
in subdomains 

  
Var FN⎡⎣ ⎤⎦ =

1
N2 NiVar Fi⎡⎣ ⎤⎦

k=1

M

∑

x1 xN 

 Ek(f(x)) 

More Information 

§  Veach PhD thesis chapter (linked to from 
website) 

§  Course Notes (links from website) 
§  Mathematical Models for Computer Graphics, Stanford, Fall 1997 
§  State of the Art in Monte Carlo Methods for Realistic Image Synthesis,  

Course 29, SIGGRAPH 2001 


