Computer Graphics II: Rendering

CSE 168 [Spr 20], Lecture 5: Monte Carlo Integration
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Motivation

Rendering = integration

Reflectance equation: Integrate over incident illumination

Rendering equation: Integral equation

Many sophisticated shading effects involve integrals
Antialiasing
Soft shadows
Indirect illumination
Caustics

Monte Carlo

Algorithms based on statistical sampling and
random numbers

Coined in the beginning of 1940s. Originally used
for neutron transport, nuclear simulations
Von Neumann, Ulam, Metropolis, ...

Canonical example: 1D integral done numerically
Choose a set of random points to evaluate function, and
then average (expectation or statistical average)

To Do

Homework 2 (Direct Lighting) due Apr 24
Assignment is on edX edge
START EARLY (NOW)

Example: Soft Shadows

E(x)= [L(x,0)cos0de
HZ
Challenges
m Visibility and blockers
m Varying light distribution

I
m Comy source g 04

Source: Agrawala. Ramamoorthi, Heirich, Moll, 2000

Monte Carlo Algorithms

Advantages
Robust for complex integrals in computer graphics
(irregular domains, shadow discontinuities and so on)
Efficient for high dimensional integrals (common in
graphics: time, light source directions, and so on)
Quite simple to implement
Work for general scenes, surfaces
Easy to reason about (but care taken re statistical bias)

Disadvantages
Noisy
Slow (many samples needed for convergence)
Not used if alternative analytic approaches exist (but
those are rare)




Outline

Motivation
Overview, 1D integration
Basic probability and sampling

Monte Carlo estimation of integrals

We can approximate

1

Jf(x)dx :j g(x)dx

0

Standard integration methods like trapezoidal
rule and Simpsons rule

Advantages:
« Converges fast for smooth integrands
+ Deterministic

Disadvantages:
» Exponential complexity in many dimensions
« Not rapid convergence for discontinuities

Slide courtesy of
Peter Shirley.

Estimating the average

N

jf(x)dx: > f(x,)

1=l

Monte Carlo methods (randomly choose
samples)

E(f(X)) Advantages:

* Robust for discontinuities

« Converges reasonably for large dimensions
« Can handle complex geometry, integrals

« Relatively simple implement, reason about

Slide courtesy of
Peter Shirley.

Integration in 1D

j[f(x)dx:?

Slide courtesy of
Peter Shirley

Or we can average

jf(x) dx = E(f(x))

f(x) u
S N )

Slide courtesy of
Peter Shirley.

Other Domains

Slide courtesy of
Peter Shirley.




Multidimensional Domains Outline

Same ideas apply for integration over ... Motivation
Pixel areas
Surfaces -
Projected areas J L Basi babilit d i
Diractions N 4 : asic probability and sampling
Camera apertures Monte Carlo estimation of integrals
Time
Paths

Overview, 1D integration

Random Variables Expected Value

Describes possible outcomes of an experiment Expectation Discrete: E(x)=Y px,
i=1

In discrete case, e.g. value of a dice roll [x = 1-6]

Continuous:  E(x)= jp(x)f(x) dx

Probability p associated with each x (1/6 for dice)

Continuous case is obvious extension For Dice example:

E(x):i%x, :%(1+2+3+4+5+6):3.5
i=1

Continuous Probability Distributions Sampling Techniques

PDF p(x) Uniform

Problem: how do we generate random points/
p(x)=0 directions during path tracing?

Non-rectilinear domains
CDF P(x) Importance (BRDF)

x Stratified
P(x)= J.p(x)dx

P()=PrX<x) P()=1

B
Pr(a <X < )= [p(x)ds

a

0

=P(p)-Pa) " '
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Surface




Generating Random Points

Uniform distribution:
Use random number generator

-

Probability

Common Operations

Want to sample probability distributions
Draw samples distributed according to probability

Useful for integration, picking important regions, etc.

Common distributions
Disk or circle
Uniform
Upper hemisphere for visibility

Area luminaire
Complex lighting like an environment map

Complex reflectance like a BRDF

Generating Random Points

Cumulative
Probability

Generating Random Points

Specific probability distribution:
Function inversion
Rejection
Metropolis

-
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Sampling Continuous Distributions

Cumulative probability distribution function

P(x)=Pr(X < x)

Construction of samples

Solve for X=P-/(U)

Must know:
1. The integral of p(x)

2. The inverse function P-/(x) 0 I%
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Example: Power Function

Assume 1 et !
w Ix"dx = i = !
plx)=(n+1)x H n+l| n+l

P(x)= X

X~px)=>X=P'(U)="YU

Trick
Y =max(U,U,.--.U,.U,,)

n+l

Pr(¥Y <x)= r[ Pr(U <x)=x""
il
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Sampling a Circle Sampling a Circle

WRONG = Equi-Areal RIGHT = Equi-Areal

P, 0)dr dO = v dr d6 = pir,0) =L
T T

p(r,0)= p(r)p(0)

|
P(g)—;

0=2nU,
PO) =0
2z

r)y=2r
p(r) ) = ’Uw

P(r)y =r
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Rejection Methods

Rejection Sampling

1= ]f(x)dx ° . ° .
:OH dv dy o/ @ y=7)
y<f(x) o
Algorithm * L

Pick U, and U,
Accept U, if U, < f(U,)

Probability

Wasteful? Efficiency = Area / Area of rectangle
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Sampling a Circle: Rejection

Outline

Motivation
do { Overview, 1D integration
X=1-2+*U,
Y=1-2*U,
while( X%+ Y2 >1 )

Basic probability and sampling

Monte Carlo estimation of integrals

May be used to pick random 2D directions

Circle techniques may also be applied to the sphere
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Monte Carlo Path Tracing

Big diffuse light source, 20 minutes

Motivation for rendering in graphics: Covered in detail in next lecture

Estimating the average

Monte Carlo methods (randomly choose
samples)

E(f{X)) Advantages:

* Robust for discontinuities

« Converges reasonably for large dimensions
« Can handle complex geometry, integrals

« Relatively simple implement, reason about

Slide courtesy of
Peter Shirley.

Unbiased Estimator

BLR )= B YY)

HE1=1()

YY) Y )

1|
=3 2 [Fpo)dx

=l q

E[ZZ] = ZE[Y,-] %Zjﬂ)d
ElaY]= aE[Y]

Properties

= i‘-f(.\')d,\'

Assume uniform probability
distribution for now
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Monte Carlo Path Tracing

1000 paths/pixel

Monte Carlo Integration

Definite integral I(f)= J.f(x) dx

Expectation of / E[f]= J-f(x)p(x)dx
0

Random variables X, ~ p(x)

Y= f(X)

hRt
1

i=

1
Estimator ==
SN

Direct Lighting - Directional Sampling

E(x)= jL(x, w)cosBdw
Q

Ray intersection X" (x, )

Sample @ uniformly by Q
Y =L(x" (x,0),~®,) cos O 21
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Direct Lighting - Area Sampling

E(x)= J'Lf(x, w)cosBdw = _“Lﬂ (x, 0"V (x, x,)C(|)s€4001529dA,
Q p x—x

’ ’

Ray direction  @'=x-x

Sample X" uniformly by 4

o o
Y =L,(x\ ) V(x’x;)m_mf/A
|x—x,'

X

L, JO —wvisible

V(x,x")= .
ll visible
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Variance

Definition
V1Y) = E[(Y - E[Y])*]
= E[Y? - 2YE[Y]+ E[T]*]
— B[V |- EY]
Properties
VI X1=2 VY]
VlaY]=a*V[Y]
Variance decreases with sample size

My 1= DI = 1)

i
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Variance

Var| E(f(x)) | = %Var[f(x)]

Variance decreases as 1/N
E(f(x)) Error decreases as 1/sqrt(N)

Variance

Var[f(x]= = S.[f(x)- EEOI

E(f(x))

Variance for Dice Example?

Work out on board (variance for single dice roll)

Variance

Problem: variance decreases with 1/N
Increasing # samples removes noise slowly

E(f(x))




Variance Reduction

Efficiency measure

Efficiency o« !

Variance e Cost

Techniques
= Importance sampling

n Sampling patterns: stratified, ...
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Importance Sampling
Put more samples where f(x) is bigger
1 N
j F(x)dx = N;Yf

fx)
p(x.)

Efp) L@ 7=

Importance Sampling
Zero variance if p(x) ~ f(x)

p(x) = cf(x)
_fx) 1
i p(x) ¢

E(fi
e Var(Y)=0

Less variance with better

importance sampling

Variance Reduction Techniques

Importance sampling

Stratified sampling

Importance Sampling

This is still unbiased
E[7 = jv(x)p(x)dx

| £(x)
E1) | = g

= [f(x)dx

for all N

Stratified Sampling

Estimate subdomains separately

E(f(x))




Stratified Sampling Stratified Sampling

This is still unbiased 1 Less overall variance if less variance
F,= Zf(xf) in subdomains

i=1

N
1 M
=%iNFf Var[FN]:W;NIVar[F,]

i
k=1

E(f(x) Ey(f(x)

More Information

Veach PhD thesis chapter (linked to from
website)

Course Notes (links from website)
Mathematical Models for Computer Graphics, Stanford, Fall 1997
State of the Art in Monte Carlo Methods for Realistic Image Synthesis,
Course 29, SIGGRAPH 2001




