To Do
Computer Graphics IlI: Rendering Submit homework 3 by Thu

CSE 168[Spr 20],Lecture 11: Fourier Analysis, Sampling Sl el e el e .
Ravi Ramamoorthi Start thinking about final project

http://viscomp.ucsd.edu/classes/cse168/sp20

This lecture gives core background on sampling and
signal-processing (bear in mind image processing)

Some slides courtesy Pat Hanrahan

Quality Improves with More Rays

pixelsamples = 1

jaggies

Area Area

1 shadow ray 16 shadow rays

Sampling and Reconstruction
pixelsamples = 16 An image is a 2D array of samples

Discrete samples from real-world continuous signal

Sampling

anti-aliased

Reconstruction




Sampling and Reconstruction

Inh m

Sample Il I |

seee LML
LR

econstruct
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(Spatial) Aliasing

Jaggies probably biggest aliasing problem

Sampling and Aliasing

Artifacts due to undersampling or poor reconstruction
Formally, high frequencies masquerading as low

E.g. high frequency line as low freq jaggies

Under-sampling Figure 14.17 FvDFH

(Spatial) Aliasing

Sampling a Zone Plate

Left rings: signal
Right rings: aliasing

Image Processing pipeline

Real world

Discrete samples (pixels)

Reconstructed function

Transform

Transformed function

Bandlimited function

Discrete samples (pixels)

Display




Motivation Ideas

Formal analysis of sampling and reconstruction Signal (function of time generally, here of space)
Important theory (signal-processing) for graphics Continuous: defined at all points; discrete: on a grid

Also relevant in rendering, modeling, animation High frequency: rapid variation; Low Freq: slow
variation

Images are converting continuous to discrete. Do this

Note: Fourier Analysis useful for understanding, sampling as best as possible

but image processing often done in spatial domain
Signal processing theory tells us how best to do this

Based on concept of frequency domain Fourier analysis

Sampling Theory Fourier Transform

Analysis in the frequency (not spatial) domain
Sum of sine waves, with possibly different offsets (phase)
Each wave different frequency, amplitude

Tool for converting from spatial to frequency domain
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One of most important mathematical ideas

+

IF@l N Computational algorithm: Fast Fourier Transform
One of 10 great algorithms scientific computing
Makes Fourier processing possible (images etc.)
Not discussed here, but look up if interested

Figure 2.6 Wolberg

Fourier Transform Fourier Transform

Simple case, function sum of sines, cosines Simple case, function sum of sines, cosines

fx)=3 Flue™™ fx)=3 Fu)e™™
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F(u)= J(: f(x)e 2" dx F(u)= J’; F(x)e > dx

Continuous infinite case Discrete case
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Inverse Transform: f(X) = J‘* F(u)ez’”“xdu f(x)= N Z F(U)I:COS(ZKUX/ N)+ ISIn(.Zn'uX/N)], 0<x<N-1

u=0




Fourier Transform: Examples 1

Single sine curve
(+constant DC term)

Fourier Transform Properties

Forward Transform: F(U) = J.m f(X)eizm'ude

+oo .
Inverse Transform: f(X) = I F(U)eZmude
Common properties
Linearity: F(af(x)+bg(x))= aF(f(x))+bF(g(x))
Derivatives: [integrate by parts]  F(f'(x))= [~ f'(x)e™""dx
. =2riuF(u)
2D Fourier Transform .

Forw:

Convolution (neXt)mverseTrav\siurm f(x,y):;[ J:H F(u,v)e*™ ™ e*™ dudv

Sampling Theorem, Bandlimiting

A signal can be reconstructed from its samples, if
the original signal has no frequencies above half
the sampling frequency — Shannon

The minimum sampling rate for a bandlimited
function is called the Nyquist rate

A signal is bandlimited if the highest frequency is
bounded. This frequency is called the bandwidth

In general, when we transform, we want to filter to
bandlimit before sampling, to avoid aliasing

Forward Transform: F(U) = '[‘* f(X)eizm’ude
+oo .
Inverse Transform: f(X) = J ) F(u)ez”’“xdu
Common examples
f(x) F(u)
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Fourier Transform Examples 2

Sampling Theorem, Bandlimiting

A signal can be reconstructed from its samples,

if the original signal has no frequencies above
half the sampling frequency — Shannon

The minimum sampling rate for a bandlimited

function is called the Nyquist rate

AT

Under-sampling

Sample at higher rate
Not always possible
Real world: lines have infinitely high frequencies,
can’ t sample at high enough resolution

Prefilter to bandlimit signal
Low-pass filtering (blurring)
Trade blurriness for aliasing

Antialiasing




Ideal bandlimiting filter

Formal derivation is homework exercise

» Frequency domain
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» Spatial domain

if full width f,,., = 1
Sine(x) = sz
Fo3

Figure 4.5 Wolberg

Convolution 2

+ Example 1:

i i Filter
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Convolution 4

« Example 1:
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Convolution 1
+ Spatial domain: output pixel is weighted sum of

pixels in neighborhood of input image
o Pattern of weights is the “filter”

i i Filter
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Convolution 3

« Example 1:
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Convolution 5
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Convolution in Frequency Domain

Forward Transform: F(U) = J. f(X)eizm.ude

Inverse Transform: f(X) = J_*‘:" F(U)ezniuxdu
Convolution (f is signal ; g is filter [or vice versa])

hiy)= [ f(x)g(y - x)dx= [ g(x)f(y - x)dx

h=f*g or f®g
Fourier analysis (frequency domain
multiplication) H(u)= F(u)G(u)

Point vs Area Sampling

Practical Image Processing

Discrete convolution (in spatial domain) with filters for
various digital signal processing operations

Easy to analyze, understand effects in frequency domain
E.g. blurring or bandlimiting by convolving with low pass filter
« Finite low-pass filters { Real world

o Point sampling (bad)
o Triangle filter Discrete samples (pixels)

o Gaussian filter

Reconstructed function

Transform

Transformed function

Convolution

Bandlimited function
Discrete samples (pixels)

Display

Uniform Supersampling

Non-uniform Sampling

Uniform sampling
m The spectrum of uniformly spaced samples is also a set of
uniformly spaced spikes

d

m Multiplying the signal by the pling pattern corresp to
placing a copy of the spectrum at each spike (in freq. space)

m Aliases are coherent, and very noticable

Non-uniform sampling

m Samples at iform | i have a different spectrum; a

single spike plus noise

B Sampling a signal in this way converts aliases into broadband
noise

m Noise is incoherent, and much less objectionable
m May cause error in the integral

€5348b Lecture 8 Pat Hanrahan / Matt Pharr, Spring 2019

Increasing the number of samples moves each
copy of the spectra further apart, thus there is
less overlap

This reduces, but does not eliminate, aliasing

Pixel = Ew‘ -Sample,

Samples

Jittered Sampling

Add uniform random ji



Jittered vs Uniform Supersampling Distribution of Extrafoveal Cones

4x4 Jittered Sumpling 4x4 Uniform Monkey eye cone distribution Fourier transform
Yellot

Poisson Disk Sampling




