Computer Graphics II: Rendering

CSE 168 [Spr 20], Lecture 1: Overview and Ray Tracing
Ravi Ramamoorthi

http://viscomp.ucsd.edu/classes/cse168/sp20

Instructor

Ravi Ramamoorthi
PhD Stanford, 2002 [with Pat Hanrahan, 2020 Turing Award]
“Spherical Harmonic Lighting” widely used in games
(e.g. Halo series), movies (e.g. Avatar), etc. (Adobe, ...)
At Columbia 2002-2008, UC Berkeley 2009-2014
“Monte Carlo denoising” inspired raytracing offline, real-time
At UCSD since Jul 2014: Director,
Awards for research: White House PECASE (2008),
SIGGRAPH Significant New Researcher (2007), ACM Fellow

Computer Graphics online MOOC (CSE 167x) finalist for two
edX Prizes. Will use edX edge, auto-feedback for 168, and
also try to record lectures (even if not full MOOC quality)

Rendering: 1960s (visibility)

Roberts (1963), Appel (1967) - hidden-line algorithms
Warnock (1969), Watkins (1970) - hidden-surface
Sutherland (1974) - visibility = sorting

MR S
Images from FvDFH, Pixar’ s Shutterbug
Slide ideas for history of Rendering courtesy Marc Levoy

Goals

Systems: Write a modern 3D image synthesis
program (path tracer with importance sampling)

Theory: Mathematical aspects and algorithms
underlying modern physically-based rendering

Topics: Other modern topics like image-based,
real-time, precomputed, volumetric rendering

This course is not about the specifics of 3D
rendering software like PBRT, Mitsuba etc. New
for this year, we optionally encourage OptiX, a
real-time raytracing API for NVIDIA GPUs

Course Staff

Ravi Ramamoorthi,

Teaching Assistants:

Andrew Bauer (will also maintain feedback servers)
[a1bauer@eng.ucsd.edu]

Guangyan Cai [g5cai@ucsd.edu]

Please see piazza for their zoom ids

Rendering: 1970s (lighting)

1970s - raster graphics
Gouraud (1971) - diffuse lighting, Phong (1974) - specular lighting
Blinn (1974) - curved surfaces, texture
Catmull (1974) - Z-buffer algorithm (2020 Turing Award)

Rendering (1980s, 90s: Global lllumination)

early 1980s - global illumination
Whitted (1980) - ray tracing
Goral, Torrance et al. (1984) radiosity
Kajiya (1986) - the rendering equation, path tracing
(this is what this course is about, modern rendering)

Image Synthesis Examples

Collage from 2007

CSE 168 Contest 2007: Butterfly
=y N7 .y

'3

.

Why Study Computer Graphics Rendering?

Applications (Movies, Games, Digital Advertising,
Lighting Simulation, Digital Humans, Virtual Reality)

Fundamental Intellectual Challenges
Create photorealistic virtual world
Understand physics and computation of light transport
Physically-based rendering has replaced ad-hoc
approaches in industry (offline ~ 2011, real-time ~2018)

Beautiful Imagery: Realistic Computer Graphics
2020 Turing Award just given for CGl in Filmmaking

Assume taken CSE 167 or equivalent (+done well)
This is a challenging course, work starts immediately
(First 2 weeks on raytracing may be review for some)

From UCB CS 294 a decade ago

Mies House: Swimming Pool

Logistics This is a Modernized Course

Website has most of Teach Modern Physically-Based Rendering and Path
the information (look at it carefully) Tracing, as used in industry (Prof. consulted with Pixar on
We will be leveraging MOOC infrastructure in a SPOC f:hange to physically-based shading, importance samp_ling
Please sign up for account at edX edge, join course: DEMO in 2011, written many key papers; TA has worked at Pixar)
edX edge is compulsory for most assignments, feedback systems . .
Must still submit “official” CSE 168 assignment (see website) Emphasis on step-by-step development,_ get it right (lots of
Please do ask us if you are confused; we are here to help subtle math, compare to reference solutions)
No required texts; optional PBRT book, Digital Image Synthesis i 5 o .
Oﬁiceqhours: i Cfass (11-12) but Chang% OEITT |gD Y Focus on offline but discuss real-time, image-based, PRT
Course newsgroup on Piazza Homework starts right away, due in 2 weeks

Website for late, collaboration policy (groups of 2), etc New developments: NVIDIA OptiX ray-tracing API like
Obviously, will relax “no late” policy as needed, but give notice OpenGL, since 2018 RTX cards 10G rays/second

Do try to attend class sessions on zoom (will record, post) Encourage (but optional) use of OptiX. If you use this

Questions? (Try various ways in zoom, unmute, chat, raise hands etc) setup yourself but basic skeleton provided. Or really slow.

Innovation: Feedback Servers

Demo of edX edge, Feedbacks

Feedback/Grading servers for all homeworks

Submit images, compare to original
Program generates difference images, report url
Can get feedback multiple times; submit final url
All run on edX edge

“Feedback” not necessarily grading
Can run extra test cases, look at code, grade fairly
But use of feedback servers/edX edge is mandatory
Experimental for this course; unlike 167 results not
deterministic, will give information re noise/variance
Can use any laptop/desktop, do it offline or in OptiX

Will test out with HW 1 images

Workload

Quick Inclusion Note

Lots of fun, rewarding but may involve significant work

We will do our best to be supportive under the circumstances Since | do occasionally get asked this question:

5 programming projects; almost all are time-consuming.
Can be done in groups of two. START EARLY !!

You are welcome to take this course if color-blind

Let me know if | create too many red-green metamers
Graded entirely on programming, weights on website Some of the best-known computer graphics
Ignore weighting on edX site; we weight as on CSE 168 site

researchers have been color-blind (ask re some stories)

Prerequisites: CSE 167, did well, enjoyed it And for most other vision issues

We've even had computer graphics award winners who

First homework last assignment in my CSE 167 : !
have been extremely nearsighted (legally blind)

Little bit of sink or swim to continue in course (but we will also
provide OptiX, embree references after assignment is due)
But not everyone has done a raytracer before, some additional
requirements for those who have already done one

Should be a difficult, but fun and rewarding course

CSE 168 is only a first step

If you enjoy CSE 168 and do well:

In Spring: CSE 190 (VR course; Schulze)
Next winter: CSE 165 (3DUI), 169 (Animation)
Graduate: CSE 274 (Topics), many 291s

Effects needed for Realism

(Soft) Shadows

Reflections (Mirrors and Glossy)
Transparency (Water, Glass)
Interreflections (Color Bleeding)

Complex lllumination (Natural, Area Light)
Realistic Materials (Velvet, Paints, Glass)

And many more

Ray Tracing
Different Approach to Image Synthesis as
compared to Hardware pipeline (OpenGL)

Pixel by Pixel instead of Object by Object

Easy to compute shadows/transparency/etc

To Do
Make sure zoom works
Look at website
Various policies for course. E-mail if confused.
Sign up for edX edge, Piazza, etc.
Skim assignments if you want. All are ready
Assignment 1, Due Apr 13 (see website).

Any questions?

Start now with raytracing lecture

Image courtesy Paul Heckbert 1983

Outline
History

Basic Ray Casting (instead of rasterization)
Comparison to hardware scan conversion

Shadows / Reflections (core algorithm)
Optimizations

Current Research

Ray Tracing: History

Appel 68

Whitted 80 [recursive ray tracing]
Landmark in computer graphics

Lots of work on various geometric primitives
Lots of work on accelerations

Current Research
Real-Time raytracing (historically, slow technique)
Ray tracing architecture

Ray Tracing History

Ray Tracing in Computer Graphics

“An improved
lllumination model
for shaded display,”
T. Whitted,

CACM 1980

Resolution:
512 x 512
Time:
VAX 11/780 (1979)
74 min.
PC (2006)
6 sec. A

Spheres and Checkerboard, T. Whitted, 1979

CS$3488 Lecture 2 Pat Hanrahan, Spring 2009

Outline

History

Basic Ray Casting (instead of rasterization)

Comparison to hardware scan conversion
Shadows / Reflections (core algorithm)
Optimizations

Current Research

Ray Tracing History

Ray Tracing in Computer Graphics

Appel 1968 - Ray casting

1. Generate an image by sending one ray per pixel

2. Check for shadows by sending a ray to the light
Y

CS348B Lecture 2 Pat Hanrahan, Spring 2009

From SIGGRAPH 18

Real Photo: Instructor and Turner Whitted at SIGGRAPH 18

Ray Casting

Produce same images as with OpenGL
Visibility per pixel instead of Z-buffer

Find nearest object by shooting rays into scene

Shade it as in standard OpenGL

Ray Casting

Virtual Viewpoint

Virtual Screen Objects

Outline in Code

Image Raytrace (Camera cam, Scene scene, int width, int height)

{
Image image = new Image (width, height) ;
for (inti=0;i<height; i++)
for (intj=0;j < width ; j++) {

Ray ray = RayThruPixel (cam, i, j) ;
Intersection hit = Intersect (ray, scene) ;
imageli][j] = FindColor (hit) ;
}

return image ;

Similar to gluLookAt derivation

gluLookAt(eyex, eyey, eyez, centerx, centery, centerz, upx,
upy, upz)

Camera at eye, looking at center, with up direction being up

Up vector

From 167 lecture on deriving gluLookAt

Comparison to hardware scan-line

Per-pixel evaluation, per-pixel rays (not scan-convert
each object). On face of it, costly

But good for walkthroughs of extremely large models
(amortize preprocessing, low complexity)

More complex shading, lighting effects possible

Finding Ray Direction

Goal is to find ray direction for given pixel i and j

Many ways to approach problem
Objects in world coord, find dirn of each ray (we do this)
Camera in canonical frame, transform objects (OpenGL)
Basic idea

Ray has origin (camera center) and direction
Find direction given camera params and i and j

Camera params as in gluLookAt
Lookfrom[3], LookAt[3], up[3], fov

Constructing a coordinate frame?

We want to associate w with a, and v with b
But a and b are neither orthogonal nor unit norm
And we also need to find u

a
W=
[l

bxw
u= 2
[loxw

vV=wXu

From 167 basic math lecture - Vectors: Orthonormal Basis Frames

Camera coordinate frame Canonical viewing geometry

- u:bx_w V=wxu
Bl

x|
We want to position camera at origin, looking down —Z dirn
au+ fv—w

Hence, vector a is given by eye — center ray =eye+t————
) |au+ﬁv—w|

The vector b is simply the up vector
Up vector

fovx] [j—(width | 2) tan[‘ fovy ., ((height | 2)— i]

a:tan[— X = .
. 2 width / 2 2 height | 2

Outline in Code Ray/Object Intersections

Image Raytrace (Camera cam, Scene scene, int width, int height)
Heart of Ray Tracer

{ One of the main initial research areas
Image image = new Image (width, height) ; Optimized routines for wide variety of primitives
for (inti= 0 i< height ; i++) Various types of info
for (intj=0;j < width ; j++) { Shadow rays: Intersection/No Intersection
Primary rays: Point of intersection, material, normals

Ray ray = RayThruPixel (cam, i, j) ; Texture coordinates

Intersection hit = Intersect (ray, scene) ;
imageli][j] = FindColor (hit) ;
}

return image ;

Work out examples
Triangle, sphere, polygon, general implicit surface

Ray-Sphere Intersection Ray-Sphere Intersection

ray : ray = P=P

sphere=(P-C)«(P-C)-r?=0 sphere=(P-C)«(P-C)-r?=0
Substitute

+Pt

0
Sphere;(ﬁo ﬂ1t_é)'('50+’51t—é)—l’2 =0

Simplify

(B, +P)+2t B,+(F,~C)+ (P, ~ C)+(F,~C)-r* =0

ray =P=P
+

Ray-Sphere Intersection
t2(P,«P)+2t P,+«(P,—C)+(P,~C)+(P,~C)-r?

Solve quadratic equations for t @
2 real positive roots: pick smaller roo
Both roots same: tangent to sphere /@
One positive, one negative root: ray
origin inside sphere (pick + root) @
Complex roots: no intersection check O

discriminant of equation first)

Ray-Triangle Intersection
One approach: Ray-Plane intersection, then
check if inside triangle

Plane equation:

plane=P+fi—A+fi=0

Ray inside Triangle

Once intersect with plane, still need to find if in
triangle

Many possibilities for triangles, general polygons
(point in polygon tests)

We find parametrically [barycentric coordinates]. Also

useful for other applications (texture mapping)

B
P=aA+pB+yC

20,420,720
o+p+y=1

Ray-Sphere Intersection

Intersection point: ray = P= 130 + 1311‘

Normal (for sphere, this is same as coordinates
in sphere frame of reference, useful other tasks)

P-C
P-C

normal =

Ray-Triangle Intersection

One approach: Ray-Plane intersection, then
check if inside triangle

Plane equation:

plane=P+fi—A+i=0
Combine with ray equation:

Ray inside Triangle

B P=0aA+BB+yC
20,420,720
a+f+y=1

P-A=B(B-A)+y(C-A)
0<B<1,0<y<1
B+y <1

Other primitives Ray Scene Intersection

Ml‘JCh.ear:Iy work |.n ray tracing focused on ray- Intersection FindIntersection(Ray ray, Scene scene)
primitive intersection tests {
. . . min_t = infinity
Cones, cylinders, ellipsoids min_primitive = NULL
. . For each primitive in scene {

Boxes (especially useful for bounding boxes) = hﬁel.sect(my, primnfve);
if (t>0 && t < min_t) then

min_primitive = primitive

min_t=t

General planar polygons
Many more

Consult chapter in Glassner (handed out) for

. . . return Intersection(min_t, min_primitive
more details and possible extra credit (eminJ P)

Transformed Objects Ray-Tracing Transformed Objects

E.g. transform sphere into ellipsoid We have an optimized ray-sphere test

. , , But we want to ray trace an ellipsoid...
Could develop routine to trace ellipsoid

(compute parameters after transformation) Solution: Ellipsoid transforms sphere
. . . Apply inverse transform to ray, use ray-sphere
May be useful for triangles, since triangle after Allows for instancing (traffic jam of cars)

transformation is still a triangle in any case Same idea for other primitives

But can also use original optimized routines

Transformed Objects Outline

Consider a general 4x4 transform M History
Will need to implement matrix stacks like in OpenGL . . . L
. " Basic Ray Casting (instead of rasterization)
Apply Inverse transform M to, ray Comparison to hardware scan conversion
Locations stored and transform in homogeneous
coordinates . Shadows / Reflections (core algorithm)
Vectors (ray directions) have homogeneous coordinate
set to 0 [so there is no action because of translations] Optimizations

Do standard ray-surface intersection as modified Current Research

Transform intersection back to actual coordinates
Intersection point p transforms as Mp
Distance to intersection if used may need recalculation
Normals n transform as M-n. Do all this before lighting

Light Source Shadows: Numerical Issues

* Numerical inaccuracy may cause intersection to be
below surface (effect exaggerated in figure)

* Causing surface to incorrectly shadow itself
» Move a little towards light before shooting shadow ray

*

Virtual Viewpoint

Virtual Screen Objects
Shatiowagyddifighisiattibeked: objettvizishadow

Outline in Code Lighting Model
Image Raytrace (Camera cam, Scene scene, int width, int height)

{

Similar to OpenGL

Lighting model parameters (global)
e o Ambientrgb
for (inti=0;1i< height ; i++) Attenuation const linear quadratic
for (intj=0;j < width ; j++){ e L
" const+lin*d+ quad *d*
Per light model parameters

. PR e Directional light (direction, RGB parameters)
image[i][j] = FindColor (hit) ; Point light (location, RGB parameters)

}

return image ;

Image image = new Image (width, height) ;

Ray ray = RayThruPixel (cam, i, j) ;
Intersection hit = Intersect (ray, scene) ;

Material Model Shading Model

Diff flect b L

LRSS (EIEERENEE 20 I=K,+K,+Y L(K,max(|+n0)+K_ (max(h -n0)y)
Specular reflectance (r g b) i=1
Shininess s Global ambient term, emission from material

Emission (r g b) For each light, diffuse specular terms
All as in OpenGL Note visibility/shadowing for each light (not in OpenGL)

Evaluated per pixel per light (not per vertex)

Mirror Reflections/Refractions

Virtual Viewpoint

Virtual Screen Objects
Generate reflected ray in mirror direction,
Get reflections and refractions of objects

Recursive Shading Model

I=K,+K, + 2 LK, max (I, «n,0)+ K (max(h, - n,0))°)

i=1

Highlighted terms are recursive specularities [mirror
reflections] and transmission (latter is extra credit)

Trace secondary rays for mirror reflections and
refractions, include contribution in lighting model

GetColor calls RayTrace recursively (the | values in
equation above of secondary rays are obtained by
recursive calls)

Turner Whitted 1980

Recursive Ray Tracing

For each pixel
Trace Primary Eye Ray, find intersection

Trace Secondary Shadow Ray(s) to all light(s)
Color = Visible ? lllumination Model : 0 ;

Trace Reflected Ray
Color += reflectivity * Color of reflected ray

Problems with Recursion

Reflection rays may be traced forever
Generally, set maximum recursion depth

Same for transmitted rays (take refraction into
account)

Effects needed for Realism

(Soft) Shadows

Reflections (Mirrors and Glossy)
Transparency (Water, Glass)
Interreflections (Color Bleeding)

Complex lllumination (Natural, Area Light)
Realistic Materials (Velvet, Paints, Glass)

Discussed in this lecture

Not discussed but possible with distribution ray tracing

Hard (but not impossible) with ray tracing; radiosity methods
All are possible with path tracing developed in this course

11

Some basic add ons

Area light sources and soft shadows: break into
grid of n x n point lights
Use jittering: Randomize direction of shadow ray
within small box for given light source direction
Jittering also useful for antialiasing shadows when
shooting primary rays

More complex reflectance models
Simply update shading model
But at present, we can handle only mirror global
illumination calculations

Some of these required for those who have
already done a raytracer

Acceleration

Testing each object for each ray is slow
Fewer Rays
Adaptive sampling, depth control
Generalized Rays
Beam tracing, cone tracing, pencil tracing etc.
Faster Intersections
Optimized Ray-Object Intersections
Fewer Intersections

y Tracing Acceleration Structures

Bounding Volume Hierarchies (BVH)
Uniform Spatial Subdivision (Grids)
Binary Space Partitioning (BSP Trees)

Axis-aligned often for ray tracing: kd-trees

Conceptually simple, implementation a bit tricky
Lecture relatively high level: Start early
Remember that acceleration a small part of grade
But will struggle in future if developing in software

Outline

History

Basic Ray Casting (instead of rasterization)
Comparison to hardware scan conversion

Shadows / Reflections (core algorithm)
Optimizations

Current Research

Acceleration Structures

Bounding boxes (possibly hierarchical)
If no intersection bounding box, needn’ t check objects

Bounding Box

Spatial Hierarchies (Oct-trees, kd trees, BSP trees)

Bounding Volume Hierarchies 1

+ Build hierarchy of bounding volumes
o Bounding volume of interior node contains all children

12

Bounding Volume Hierarchies 2

» Use hierarchy to accelerate ray intersections
o Intersect node contents only if hit bounding volume

CNCRG

AN O 7

Acceleration Structures: Grids

Uniform Grid: Problems

+ Potential problem:
o How choose suitable grid resolution?

Too little benefit
if grid is too coarse

Too much cost

if grid is too fine

Bounding Volume Hierarchies 3

« Sort hits & detect early termination

FindIntersection(Ray ray, Node node)
¢

// Find intersections with child node bounding volumes
/I Sort intersections front to back

// Process intersections (checking for early termination)
min_t = infinity;
for each intersected child i {
if (min_t < bv_t[i]) break;
shape_t = FindIntersection(ray, child);
if (shape_t < min_t) { min_t = shape_t:}
}
return min_t;

Acceleration and Regular Grids

Simplest acceleration, for example 5x5x5 grid
For each grid cell, store overlapping triangles

March ray along grid (need to be careful with
this), test against each triangle in grid cell

More sophisticated: kd-tree, oct-tree bsp-tree

Or use (hierarchical) bounding boxes

Try to implement some acceleration in HW

+ Construct adaptive grid over scene
o Recursively subdivide box-shaped cells into 8 octants
o Index primitives by overlaps with cells

(e

\Z

Generally fewer cells I /\Dl §

13

Octree traversal

» Trace rays through neighbor cells
o Fewer cells
o More complex neighbor finding

Trade-off fewer cells for
more expensive traversal

Bounding Box Test

Ray-Intersection is simple coordinate check
Intricacies with test, see Shirley book

Hierarchical Bounding Boxes

Creating Bounding Volume Hierarchy

function bvh-node::create (object array A, int AXIS)
N = A.length() ;
if (N == 1) {left = A[0]; right = NULL; bbox = bound(A[0]);}
else if (N == 2) {
left = A[0] ; right = A[1] ;
bbox = combine(bound(A[0]),bound(A[1])) ;
else
Find midpoint m of bounding box of A along AXIS
Partition A into lists of size k and N-k around m
left = new bvh-node (A[O...k],(AXIS+1) mod 3) ;
right = new bvh-node(A[k+1...N-1],(AXIS+1) mod 3);
bbox = combine (left -> bbox, right -> bbox) ;

From page 305 of Shirley book

Math of 2D Bounding Box Test

Can you find a t in range =

returnfalse; tr
xmin
else t

xmin Xmax ymin “ymax
returntrue; —_—

No intersection if x and y ranges don’ t overlap

Hierarchical Bounding Box Test

If ray hits root box
Intersect left subtree
Intersect right subtree
Merge intersections (find closest one)

Standard hierarchical traversal
But caveat, since bounding boxes may overlap

At leaf nodes, must intersect objects

Area Heuristics

Instead of mid-point of bounding box, alternating axes,
pick the axis and the location to split carefully

The algorithm can test several splitting planes (at least 9
recommended) across X,y,z and chooses best one

Area Heuristic: min an, +a,n,considering areas of each
child box and number of primitives contained in each

Longer for construction but better balanced
Ideally speeds up raytracing (in Optix BVH built in)

(Optional, but if interested read up on Surface Area
Heuristic [SAH] and similar methods. Also see fast
updates for animations, dynamic scenes)

Uniform Spatial Subdivision

Different idea: Divide space rather than objects

In BVH, each object is in one of two sibling nodes
A point in space may be inside both nodes

In spatial subdivision, each space point in one node
But object may lie in multiple spatial nodes

Simplest is uniform grid (have seen this already)
Challenge is keeping all objects within cell

And in traversing the grid

BSP Trees

Used for visibility and ray tracing
Book considers only axis-aligned splits for ray tracing
Sometimes called kd-tree for axis aligned

Split space (binary space partition) along planes
Fast queries and back-to-front (painter’ s) traversal

Construction is conceptually simple
Select a plane as root of the sub-tree
Split into two children along this root
Random polygon for splitting plane (may need to split
polygons that intersect it)

BSP slides courtesy Prof. O’ Brien

First Split

Traversal of Grid High Level

Initial State

Second Split

15

Third Split

Final BSP Tree

Other Accelerations

Screen space coherence
o Check last hit first

o Beam tracing

o Pencil tracing

o Cone tracing

Memory coherence

o Large scenes

Parallelism
o Ray casting is “embarassingly parallelizable”

etc.

Fourth Split

BSP Trees Cont’ d

Continue splitting until leaf nodes

Visibility traversal in order
Child one
Root
Child two

Child one chosen based on viewpoint
Same side of sub-tree as viewpoint

BSP tree built once, used for all viewpoints

Outline

History

Basic Ray Casting (instead of rasterization)
Comparison to hardware scan conversion

Shadows / Reflections (core algorithm)
Optimizations

Current Research

16

Raytracing on Graphics Hardware

Modern Programmable Hardware general
streaming architecture

Can map various elements of ray tracing

Kernels like eye rays, intersect etc.

In vertex or fragment programs

Convergence between hardware, ray tracing
[Purcell et al. 2002, 2003]
http://graphics.stanford.edu/papers/photongfx

Interactive Raytracing

Ray tracing historically slow

Now viable alternative for complex scenes
Key is sublinear complexity with acceleration;
need not process all triangles in scene

Allows many effects hard in hardware

Today graphics hardware and software (NVIDIA
Optix 6, RTX chips claim 10G rays per second).

== Ring - Stencil Routing === Cornell Box - Bitonic Sort

645 ® 512512,
65K photons

2x384, 16K photons.

Glass Ball - Stencil Routing Cornell Box - Increased Search Radius

, 5K photons

17

