
1

Computer Graphics

CSE 167 [Win 24], Lecture 8: OpenGL 2

Ravi Ramamoorthi
http://viscomp.ucsd.edu/classes/cse167/wi24

1

To Do

§ Milestone on HW 2 due on Monday Feb 5

§ Any questions or issues?

§ Continue working on HW 2. Can be difficult

§ Class lectures, programs primary source
§ Can leverage many sources (GL(SL) book, excellent

online documentation, see links class website)
§ It is a good idea to copy (and modify) relevant segments

§ But only from materials provided with the class
§ Keep collaboration policy in mind: no copying from classmates etc
§ No use of AI agents like chatGPT except to do basic web searches

2

Methodology for Lecture

§ Make mytest1 more
ambitious

§ Sequence of steps

§ Demo

3

Review of Last Demo

§ Changed floor to all white, added global for teapot and
teapotloc, moved geometry to new header file

§ Demo 0 [set DEMO to 4 all features]

#include <GL/glut.h> //also <GL/glew.h>; <GLUT/glut.h> for Mac OS
#include ““shaders.h””
#include ““geometry.h””

int mouseoldx, mouseoldy ; // For mouse motion
GLfloat eyeloc = 2.0 ; // Where to look from; initially 0 -2, 2
GLfloat teapotloc = -0.5 ; // ** NEW ** where the teapot is located
GLint animate = 0 ; // ** NEW ** whether to animate or not
GLuint vertexshader, fragmentshader, shaderprogram ; // shaders

const int DEMO = 0 ; // ** NEW ** To turn on and off features

4

Outline
§ Review of demo from last lecture

§ Basic geometry setup for cubes (pillars), colors
§ Single geometric object, but multiple colors for pillars

§ Matrix Stacks and Transforms (draw 4 pillars)

§ Depth testing (Z-buffering)

§ Animation (moving teapot)

§ Texture Mapping (wooden floor)

§ Best source for OpenGL is the red book and GLSL book. Of course,
this is more a reference manual than a textbook, and you are better off
implementing rather than reading end to end.

5

Geometry Basic Setup 1
const int numobjects = 2 ; // number of objects for buffer

const int numperobj = 3 ;

const int ncolors = 4 ;

GLUint VAOs[numobjects+ncolors], teapotVAO; // VAO (Vertex Array
Object) for each primitive object

GLuint buffers[numperobj*numobjects+ncolors], teapotbuffers[3] ; //
** NEW ** List of buffers for geometric data

GLuint objects[numobjects] ; // ** NEW ** For each object

GLenum PrimType[numobjects] ;

GLsizei NumElems[numobjects] ;

// For the geometry of the teapot

std::vector <glm::vec3> teapotVertices;

std::vector <glm::vec3> teapotNormals;

std::vector <unsigned int> teapotIndices;

// To be used as a matrix stack for the modelview.

std::vector <glm::mat4> modelviewStack;

6

2

Geometry Basic Setup 2
// ** NEW ** Floor Geometry is specified with a vertex array

// ** NEW ** Same for other Geometry

enum {Vertices, Colors, Elements} ; // For arrays for object

enum {FLOOR, CUBE} ; // For objects, for the floor

const GLfloat floorverts[4][3] = {

 {0.5, 0.5, 0.0}, {-0.5, 0.5, 0.0}, {-0.5, -0.5, 0.0}, {0.5, -0.5,
0.0}

} ;

const GLfloat floorcol[4][3] = {

 {1.0, 1.0, 1.0}, {1.0, 1.0, 1.0}, {1.0, 1.0, 1.0}, {1.0, 1.0, 1.0}

} ;

const GLubyte floorinds[1][6] = { {0, 1, 2, 0, 2, 3} } ;

const GLfloat floortex[4][2] = {

 {1.0, 1.0}, {0.0, 1.0}, {0.0, 0.0}, {1.0, 0.0}

} ;

7

Cube geometry (for pillars)
const GLfloat wd = 0.1 ;

const GLfloat ht = 0.5 ;

const GLfloat _cubecol[4][3] = {

 {1.0, 0.0, 0.0}, {0.0, 1.0, 0.0}, {0.0, 0.0, 1.0}, {1.0, 1.0,
0.0} } ;

const GLfloat cubeverts[8][3] = {

 {-wd, -wd, 0.0}, {-wd, wd, 0.0}, {wd, wd, 0.0}, {wd, -wd, 0.0},

 {-wd, -wd, ht}, {wd, -wd, ht}, {wd, wd, ht}, {-wd, wd, ht}

} ;

GLfloat cubecol[8][3] ;

const GLubyte cubeinds[12][3] = {

 {0, 1, 2}, {0, 2, 3}, // BOTTOM

 {4, 5, 6}, {4, 6, 7}, // TOP

 {0, 4, 7}, {0, 7, 1}, // LEFT

 {0, 3, 5}, {0, 5, 4}, // FRONT

 {3, 2, 6}, {3, 6, 5}, // RIGHT

 {1, 7, 6}, {1, 6, 2} // BACK

} ;

 8

Initialize Geometry Function
// This function takes in a vertex, color, index and type array

void initobject(GLuint object, GLfloat * vert, GLint sizevert, GLfloat * col, GLint
sizecol, GLubyte * inds, GLint sizeind, GLenum type) {

 int offset = object * numperobj ;

 glBindVertexArray(VAOs[object]);

 glBindBuffer(GL_ARRAY_BUFFER, buffers[Vertices + offset]);

 glBufferData(GL_ARRAY_BUFFER, sizevert, vert, GL_STATIC_DRAW);

 // Use layout location 0 for the vertices

 glEnableVertexAttribArray(0);

 glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 3 * sizeof(GLfloat), 0);

 glBindBuffer(GL_ARRAY_BUFFER, buffers[Colors + offset]);

 glBufferData(GL_ARRAY_BUFFER, sizecol, col, GL_STATIC_DRAW);

 // Use layout location 1 for the colors

 glEnableVertexAttribArray(1);

 glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, 3 * sizeof(GLfloat), 0);

 glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, buffers[Elements + offset]);

 glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeind, inds, GL_STATIC_DRAW);

 PrimType[object] = type;

 NumElems[object] = sizeind;

 // Prevent further modification of this VAO by unbinding it

 glBindVertexArray(0);}

9

Initialize Cubes with Colors 1
void initcubes(GLuint object, GLfloat * vert, GLint sizevert, GLubyte *

inds, GLint sizeind, GLenum type) {

 for (int i = 0; i < ncolors; i++) {

 for (int j = 0; j < 8; j++)

 for (int k = 0; k < 3; k++)

 cubecol[j][k] = _cubecol[i][k];

 glBindVertexArray(VAOs[object + i]);

 int offset = object * numperobj;

 int base = numobjects * numperobj;

 glBindBuffer(GL_ARRAY_BUFFER, buffers[Vertices + offset]);

 glBufferData(GL_ARRAY_BUFFER, sizevert, vert, GL_STATIC_DRAW);

 // Use layout location 0 for the vertices

 glEnableVertexAttribArray(0);

 glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 3 *
sizeof(GLfloat), 0);

 glBindBuffer(GL_ARRAY_BUFFER, buffers[base + i]);

 glBufferData(GL_ARRAY_BUFFER, sizeof(cubecol), cubecol,
GL STATIC DRAW);

 10

Initialize Cubes with Colors 2
...

 // Use layout location 1 for the colors

 glEnableVertexAttribArray(1);

 glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, 3 *
sizeof(GLfloat), 0);

 glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, buffers[Elements +
offset]);

 glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeind, inds,
GL_STATIC_DRAW);

 PrimType[object] = type;

 NumElems[object] = sizeind;

 // Prevent further modification of this VAO by unbinding it

 glBindVertexArray(0); }

}

//in init

 initobject(FLOOR, (GLfloat *) floorverts, sizeof(floorverts), (GLfloat
*) floorcol, sizeof (floorcol), (GLubyte *) floorinds, sizeof
(floorinds), GL_TRIANGLES) ;

 initcubes(CUBE, (GLfloat *)cubeverts, sizeof(cubeverts), (GLubyte
*)cubeinds, sizeof(cubeinds), GL_TRIANGLES);

 loadteapot();

11

Drawing with/without Colors

// And a function to draw with them, similar to drawobject but with color

void drawcolor(GLuint object, GLuint color) {

 glBindVertexArray(VAOs[object + color]);
 glDrawElements(PrimType[object], NumElems[object], GL_UNSIGNED_BYTE,
0);

 glBindVertexArray(0);

}

void drawobject(GLuint object) {

 glBindVertexArray(VAOs[object]);

 glDrawElements(PrimType[object], NumElems[object], GL_UNSIGNED_BYTE,
0);

 glBindVertexArray(0);

}

void loadteapot() // See source code for details if interested

12

3

Outline
§ Review of demo from last lecture

§ Basic geometry setup for cubes (pillars), colors
§ Single geometric object, but multiple colors for pillars

§ Matrix Stacks and Transforms (draw 4 pillars)

§ Depth testing (Z-buffering)

§ Animation (moving teapot)

§ Texture Mapping (wooden floor)

§ Best source for OpenGL is the red book and GLSL book. Of course,
this is more a reference manual than a textbook, and you are better off
implementing rather reading end to end.

13

Summary OpenGL Vertex Transforms

Object coords
(x y z w)t vertex

Modelview matrix
[Object Transforms

and glm::lookAt]

Projection matrix
[3D to 2D, usually
glm::perspective]

Eye coordinates
(used for lighting)

Perspective Divide
(Dehomogenization)

Clip coordinates

Viewport Transform
(glViewport)

Normalized Device
Coordinates

Window Coords

14

Transformations

Matrix Stacks
§ Old OpenGL: glPushMatrix, glPopMatrix, glLoad, glMultMatrixf
§ Useful for hierarchically defined figures, placing pillars
§ Current recommendation is STL stacks managed yourself, which is

done in mytest2. (You must manage the stack yourself for HW 2).

Transforms
§ Write your own translate, scale, rotate for HW 1 and HW 2
§ Careful of OpenGL convention: In old-style, Right-multiply current

matrix (last is first applied). glm operators follow this sometimes.

Also gluLookAt (glm::lookAt), gluPerspective (glm::perspective)
§ Remember just matrix like any other transform, affecting modelview
§ See mytest for how to best implement these ideas

15

Drawing Pillars 1 (in display)
 // 1st pillar: Right-multiply modelview as in old OpenGL

 pushMatrix(modelview) ; // push/pop functions for stack

 modelview = modelview * glm::translate(identity, glm::vec3(-0.4, -
0.4, 0.0)) ; // build translation matrix

 glUniformMatrix4fv(modelviewPos, 1, GL_FALSE,
&(modelview)[0][0]);

 drawcolor(CUBE, 0) ;

 popMatrix(modelview) ;

 // 2nd pillar

 pushMatrix(modelview) ;

 modelview = modelview * glm::translate(identity, glm::vec3(0.4, -
0.4, 0.0)) ; // build translation matrix

 glUniformMatrix4fv(modelviewPos, 1, GL_FALSE,
&(modelview)[0][0]);

 drawcolor(CUBE, 1) ;

 popMatrix(modelview) ;

// Function pushes specified matrix onto the modelview stack

void pushMatrix(glm::mat4 mat) {

 16

Drawing Pillars 2
// 3rd pillar

 pushMatrix(modelview);
 modelview = modelview * glm::translate(identity,
glm::vec3(0.4, 0.4, 0.0));
 glUniformMatrix4fv(modelviewPos, 1, GL_FALSE,
&(modelview)[0][0]);
 drawcolor(CUBE, 2) ;
 popMatrix(modelview);
 // 4th pillar
 pushMatrix(modelview);
 modelview = modelview * glm::translate(identity, glm::vec3(-
0.4, 0.4, 0.0));
 glUniformMatrix4fv(modelviewPos, 1, GL_FALSE,
&(modelview)[0][0]);
 drawcolor(CUBE, 3) ;
 popMatrix(modelview);
// This function pops a matrix from the modelview stack void
popMatrix(glm::mat4& mat) {
 if (modelviewStack.size()) {
 mat = glm::mat4(modelviewStack.back());
 modelviewStack.pop_back();
 }
 else { // Just to prevent errors when popping from an empty

 17

Demo

§ Demo 1

§ Does order of drawing matter?

§ What if I move floor after pillars in code?

§ Is this desirable? If not, what can I do about it?

18

4

Outline
§ Review of demo from last lecture

§ Basic geometry setup for cubes (pillars), colors
§ Single geometric object, but multiple colors for pillars

§ Matrix Stacks and Transforms (draw 4 pillars)

§ Depth testing (Z-buffering)

§ Animation (moving teapot)

§ Texture Mapping (wooden floor)

§ Best source for OpenGL is the red book and GLSL book. Of course,
this is more a reference manual than a textbook, and you are better off
implementing rather reading end to end.

19

Double Buffering

§ New primitives draw over (replace) old objects

§ Can lead to jerky sensation

§ Solution: double buffer. Render into back
(offscreen) buffer. When finished, swap buffers
to display entire image at once.

§ Changes in main and display
 glutInitDisplayMode (GLUT_DOUBLE | GLUT_RGB | GLUT_DEPTH);

 glutSwapBuffers() ;

 glFlush ();

20

Turning on Depth test (Z-buffer)

OpenGL uses a Z-buffer for depth tests
§ For each pixel, store nearest Z value (to camera) so far
§ If new fragment is closer, it replaces old z, color

[“less than” can be over-ridden in fragment program]
§ Simple technique to get accurate visibility
§ (Be sure you know what fragments and pixels are)

Changes in main fn, display to Z-buffer
glutInitDisplayMode (GLUT_DOUBLE | GLUT_RGB | GLUT_DEPTH);
glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

In init function
 glEnable(GL_DEPTH_TEST) ;
 glDepthFunc(GL_LESS) ; // The default option

21

Demo

§ Demo 2

§ Does order of drawing matter any more?

§ What if I change near plane to 0?

§ Is this desirable? If not, what can I do about it?

22

Outline
§ Review of demo from last lecture

§ Basic geometry setup for cubes (pillars), colors
§ Single geometric object, but multiple colors for pillars

§ Matrix Stacks and Transforms (draw 4 pillars)

§ Depth testing (Z-buffering)

§ Animation (moving teapot)

§ Texture Mapping (wooden floor)

§ Best source for OpenGL is the red book and GLSL book. Of course,
this is more a reference manual than a textbook, and you are better off
implementing rather reading end to end.

23

Demo

§ Demo 3

§ Notice how teapot cycles around

§ And that I can pause and restart animation

§ And do everything else (zoom etc.) while teapot
moves in background

24

5

Drawing Teapot (in display)
// ** NEW ** Put a teapot in the middle that animates

 pushMatrix(modelview);
 modelview = modelview * glm::translate(identity,
glm::vec3(teapotloc, 0.0, 0.0));
 // The following two transforms set up and center the teapot
 // Transforms right-multiply the modelview matrix (top of the stack)
 modelview = modelview * glm::translate(identity, glm::vec3(0.0,
0.0, 0.1));
 modelview = modelview * glm::rotate(identity, glm::pi<float>() /
2.0f, glm::vec3(1.0, 0.0, 0.0));
 float size = 0.235f; // Teapot size
 modelview = modelview * glm::scale(identity, glm::vec3(size, size,
size));
 glUniformMatrix4fv(modelviewPos, 1, GL_FALSE, &(modelview)[0][0]);
 drawteapot() ;
 popMatrix(modelview);

void drawteapot() {// drawteapot() function in geometry.h
 glBindVertexArray(teapotVAO);
 glDrawElements(GL_TRIANGLES, teapotIndices.size(),
GL_UNSIGNED_INT, 0);
 glBindVertexArray(0);}

 25

Simple Animation routine

// ** NEW ** in this assignment, is an animation of a teapot
// Hitting p will pause this animation; see keyboard callback

void animation(void) {
 teapotloc = teapotloc + 0.005 ;
 if (teapotloc > 0.5) teapotloc = -0.5 ;
 glutPostRedisplay() ;
}

26

Keyboard callback (p to pause)

GLint animate = 0 ; // ** NEW ** whether to animate or not

void keyboard (unsigned char key, int x, int y)
{
 switch (key) {
 case 27: // Escape to quit
 exit(0) ;
 break ;
 case 'p': // ** NEW ** to pause/restart animation
 animate = !animate ;
 if (animate) glutIdleFunc(animation) ;
 else glutIdleFunc(NULL) ;
 break ;
 default:
 break ;
 }
}

27

Outline

§ Review of demo from last lecture

§ Display lists (extend init for pillars)

§ Matrix stacks and transforms (draw 4 pillars)

§ Depth testing or z-buffering

§ Animation (moving teapot)

§ Texture mapping (wooden floor) [mytest3]

28

New globals and basic setup
// In mytest3.cpp

GLubyte woodtexture[256][256][3] ; // texture (from grsites.com)

GLuint texNames[1] ; // texture buffer

GLuint istex ; // blend parameter for texturing

GLuint islight ; // for lighting

GLint texturing = 1 ; // to turn on/off texturing

GLint lighting = 1 ; // to turn on/off lighting

// In Display

 glUniform1i(islight,0) ; // Turn off lighting (except on teapot, later)

 glUniform1i(istex,texturing) ;

 drawtexture(FLOOR,texNames[0]) ; // Texturing floor

 // drawobject(FLOOR) ;

 glUniform1i(istex,0) ; // Other items aren't textured

29

Simple Toggles for Keyboard
case 't': // ** NEW ** to turn on/off texturing ;

 texturing = !texturing ;

 glutPostRedisplay() ;

 break ;

 case 's': // ** NEW ** to turn on/off shading (always smooth) ;

 lighting = !lighting ;

 glutPostRedisplay() ;

 break ;

30

6

Adding Visual Detail

§ Basic idea: use images instead of more
polygons to represent fine scale color variation

31

Texture Mapping

§ Important topic: nearly all objects textured
§ Wood grain, faces, bricks and so on
§ Adds visual detail to scenes

§ Can be added in a fragment shader

Polygonal model With surface texture

32

Setting up texture
inittexture("wood.ppm", shaderprogram) ; // in init()

// Very basic code to read a ppm file

// And then set up buffers for texture coordinates
void inittexture (const char * filename, GLuint program) {

 int i,j,k ;

 FILE * fp ;

 assert(fp = fopen(filename,"rb")) ;

 fscanf(fp,"%*s %*d %*d %*d%*c") ;

 for (i = 0 ; i < 256 ; i++)

 for (j = 0 ; j < 256 ; j++)

 for (k = 0 ; k < 3 ; k++)

 fscanf(fp,"%c",&(woodtexture[i][j][k])) ;

 fclose(fp) ;

33

Texture Coordinates
§ Each vertex must have a texture coordinate: pointer to texture.

Interpolate for pixels (each fragment has st)
 // Set up Texture Coordinates

 glGenTextures(1, texNames) ;

 glBindVertexArray(VAOs[FLOOR]);

 glBindBuffer(GL_ARRAY_BUFFER, buffers[numobjects*numperobj+ncolors]) ;

 glBufferData(GL_ARRAY_BUFFER, sizeof (floortex),
floortex,GL_STATIC_DRAW);

 // Use layout location 2 for texcoords

 glEnableVertexAttribArray(2);

 glVertexAttribPointer(2, 2, GL_FLOAT, GL_FALSE, 2 * sizeof(GLfloat), 0);

 glActiveTexture(GL_TEXTURE0) ;

 glEnable(GL_TEXTURE_2D) ;

 glBindTexture (GL_TEXTURE_2D, texNames[0]) ;

34

Specifying the Texture Image

§ glTexImage2D(target, level, components, width, height,
border, format, type, data)

§ target is GL_TEXTURE_2D
§ level is (almost always) 0
§ components = 3 or 4 (RGB/RGBA)
§ width/height MUST be a power of 2
§ border = 0 (usually)
§ format = GL_RGB or GL_RGBA (usually)
§ type = GL_UNSIGNED_BYTE, GL_FLOAT, etc…

35

Texture Image and Bind to Shader
glTexImage2D(GL_TEXTURE_2D,0,GL_RGB, 256, 256, 0, GL_RGB,
GL_UNSIGNED_BYTE, woodtexture) ;

 glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER,
GL_LINEAR) ;

 glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,
GL_LINEAR) ;

 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT) ;
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT) ;

 // Define a sampler. See page 709 in red book, 7th ed.
 GLint texsampler ;

 texsampler = glGetUniformLocation(program, "tex") ;

 glUniform1i(texsampler,0) ; // Could also be GL_TEXTURE0
 istex = glGetUniformLocation(program,"istex") ;

36

7

Drawing with Texture

// And a function to draw with textures, similar to drawobject

void drawtexture(GLuint object, GLuint texture) {

 glBindTexture(GL_TEXTURE_2D, texture);
 glBindVertexArray(VAOs[object]);

 glDrawElements(PrimType[object], NumElems[object],
GL_UNSIGNED_BYTE, 0);

 glBindVertexArray(0);

}

37

Final Steps for Drawing (+Demo)
§ Vertex shader (just pass on texture coords)
layout (location = 2) in vec2 texCoords;

out vec2 texcoord; // similar definitions for positions and normals

uniform int istex ;

void main() {

 gl_Position = projection * modelview * vec4(position, 1.0f);

 mynormal = mat3(transpose(inverse(modelview))) * normal ;

 myvertex = modelview * vec4(position, 1.0f) ;

 texcoord = vec2 (0.0, 0.0); // Default value just to prevent errors

 if (istex != 0){ texcoord = texCoords;} }

§ Fragment shader (can be more complex blend)
uniform sampler2D tex ;

uniform int istex ;

void main (void) {

 if (istex > 0) fragColor = texture(tex, texcoord) ;

38

More on Texture (very briefly)

Full lecture later in course

§ Optimizations for efficiency

§ Mipmapping

§ Filtering

§ Texture Coordinate generation

§ Texture Matrix

§ Environment Mapping

If very ambitious, read more in OpenGL

39

Displacement Mapping

40

Illumination Maps
§ Quake introduced illumination maps or light

maps to capture lighting effects in video games
Texture map:

Texture map
+ light map:

Light map

41

Environment Maps

Images from Illumination and Reflection Maps:
 Simulated Objects in Simulated and Real Environments
Gene Miller and C. Robert Hoffman
SIGGRAPH 1984 “Advanced Computer Graphics Animation” Course Notes

42

8

Solid textures
Texture values indexed

by 3D location (x,y,z)
• Expensive storage, or
• Compute on the fly,

e.g. Perlin noise à

43 44

