Computer Graphics

CSE 167 [Win 24], Lecture 8: OpenGL 2

Ravi Ramamoorthi

http://viscomp.ucsd.edu/classes/cse167/wi24

Methodology for Lecture

[Simple Demo with Shaders

Make mytest1 more
ambitious

Sequence of steps

Demo

Outline
Review of demo from last lecture

Basic geometry setup for cubes (pillars), colors
Single geometric object, but multiple colors for pillars

Matrix Stacks and Transforms (draw 4 pillars)
Depth testing (Z-buffering)

Animation (moving teapot)

Texture Mapping (wooden floor)

Best source for OpenGL is the red book and GLSL book. Of course,

this is more a reference manual than a textbook, and you are better off
imnlementina rather than readina end tn end

To Do

Milestone on HW 2 due on Monday Feb 5

Any questions or issues?

Continue working on HW 2. Can be difficult
Class lectures, programs primary source

Can leverage many sources (GL(SL) book, excellent

online documentation, see links class website)

It is a good idea to copy (and modify) relevant segments
But only from materials provided with the class

Keep collaboration policy in mind: no copying from classmates etc
No use of Al agents like chatGPT except to do basic web searches

Review of Last Demo

Changed floor to all white, added global for teapot and
teapotloc, moved geometry to new header file

Demo 0 [set DEMO to 4 all features]

#include <GL/glut.h> //also <GL/glew.h>; <GLUT/glut.h> for Mac OS
#include “shaders.h”
#include “geometry.h”

int mouseoldx, mouseoldy ; // For mouse motion

GLfloat eyeloc = 2.0 ; // Where to look from; initially 0 -2, 2
GLfloat teapotloc = -0.5 ; // ** NEW ** where the teapot is located
GLint animate = 0 ; // ** NEW ** whether to animate or not

GLuint vertexshader, fragmentshader, shaderprogram ; // shaders

const int DEMO = 0 ; // ** NEW ** To turn on and off features

Geometry Basic Setup 1

const int numobjects = 2 ; // number of objects for buffer
const int numperobj = 3 ;
const int ncolors = 4 ;

GLUint VAOs[numobjects+ncolors], teapotVAO; // VAO (Vertex Array
Object) for each primitive object

GLuint buffers[numperobj*numobjects+ncolors], teapotbuffers[3] ;
** NEW ** List of buffers for geometric data

GLuint objects[numobjects] ; // ** NEW ** For each object
GLenum PrimType [numobjects] ;

GLsizei NumElems [numobjects] ;

// For the geometry of the teapot
std: :vector <glm::vec3> teapotVertices;
std: :vector <glm::vec3> teapotNormals;

std: :vector <unsigned int> teapotIndices;

// To be used as a matrix stack for the modelview.

B e P R ey SO N

Geometry Basic Setup 2

// ** NEW ** Floor Geometry is specified with a vertex array
// ** NEW ** Same for other Geometry

enum {Vertices, Colors, Elements} ; // For arrays for object
enum {FLOOR, CUBE} ; // For objects, for the floor

const GLfloat floorverts[4][3] = {

(8(;’)' 0.5, 0.0}, {-0.5, 0.5, 0.0}, {-0 -0.5, 0.0}, {0.5,

Yo
const GLfloat floorcol[4][3] = {
{1.0, 1.0, 1.0}, {1.0, 1.0, 1.0}, {1.0, 1.0, 1.0}, {1.0, 1.0, 1.0}
Yo
const GLubyte floorinds[1][6] = { {0, 1, 2, 0, 2, 3} } ;
const GLfloat floortex[4][2] =
{1.0, 1.0}, {0.0, 1.0}, {0.0, 0.0}, {1.0, 0.0}

Initialize Geometry Function

//~TRIT TuRCTIOR TEReT IR = VeITox, ColoT, IncK SRd TyPe SIray

void initobject(GLuint object, GLfloat * vert, GLint sizevert, GLfloat * col, GLint
sizecol, GLubyte * inds, GLint sizeind, GLenum type)

int offset = object * numperobj

glBindVertexArray (VAOs [object]) ;

glBindBuffer (GL_ARRAY BUFFER, buffers[Vertices + offset]);

glBufferData (GL_ARRAY_BUFFER, sizevert, vert, GL_STATIC_DRAW);

// Use layout location 0 for the vertices

glEnableVertexAttribArray (0) ;

glVertexAttribPointer (0, 3, GL_FLOAT, GL_FALSE, 3 * sizeof (GLfloat), 0);
glBindBuffer (GL_ARRAY_BUFFER, buffers[Colors + offset]);

glBufferData (GL_ARRAY BUFFER, sizecol, col, GL_STATIC_DRAW);

// Use layout location 1 for the colors

glEnableVertexAttribArray (1) ;

glVertexAttribPointer(l, 3, GL_FLOAT, GL_FALSE, 3 * sizeof (GLfloat), 0);
glBindBuffer (GL_ELEMENT ARRAY BUFFER, buffers[Elements + offset]);
glBufferData (GL_ELEMENT_ARRAY BUFFER, sizeind, inds, GL_STATIC_DRAW) ;
PrimType[object] = type;

NumElems [object] = sizeind;

// Prevent further modification of this VAO by unbinding it

Initialize Cubes with Colors 2

// Use layout location 1 for the colors
glEnableVertexAttribArray (1) ;

VertexAttribPointer (1, 3, GL_FLOAT, GL FALSE, 3 *
slzeof(GLfloat) , 0); - -

glBindBuffer (GL_ELEMENT_ ARRAY BUFFER, buffers[Elements +
offset]) ;

glBufferData (GL_ELEMENT ARRAY BUFFER, sizeind, inds,
GL_STATIC_DRAW) ;

PrimType [object] = type;
NumElems [object] = sizeind;
// Prevent further modification of this VAO by unbinding it
glBindVertexArray(0); }
}
//in init
initobject (FLOOR, (GLfloat *) floorverts, sizeof (floorverts), (GLfloat

*) floorcol, sizeof (floorcol), (GLubyte *) floorinds, sizeof
(floorinds) , GL_TRIANGLES) ;

initcubes (CUBE, (GLfloat *)cubeverts, sizeof (cubeverts), (GLubyte
*)cubeinds, sizeof (cubeinds), GL_TRIANGLES) ;

Cube geometry (for pillars)

const GLfloat wd = 0.1 ;
const GLfloat ht 0.5
const GLfloat _cubecol[4][3] = {
(ég}, ;)AO, 0.0}, {0.0, 1.0, 0.0}, {0.0, 0.0, 1.0}, {1.0, 1.0,

const GLfloat cubeverts[8][3] = {
{-wd, -wd, 0.0}, {-wd, wd, 0.0}, {wd, wd, 0.0}, {wd, -wd, 0.0},
{-wd, -wd, ht}, {wd, -wd, ht}, {wd, wd, ht}, {-wd, wd, ht}
Yo
GLfloat cubecol[8][3] ;
const GLubyte cubeinds[12][3] = {
{0, 2}, {0, 2, 3}, // BOTTOM
{4, 6}, (4, 7}, // TOP
{0, 7}, {0, 1}, // LEFT
{0, 5}, {0, 4}, // FRONT
3, 6}, (3, 5}, // RIGHT
1, 6}, {1, 2} // BACK

1
5
4,
3
2
7

Initialize Cubes with Colors 1

void i s (GLuint object, GLfloat * vert, GLint sizevert, GLubyte *
ds GLlnt sizeind, Lenum type) {

for (int i i < ncolors; i++) {

for (int j = 0; j < 8; j++)

for (int k = 0; k < 3; k++)

cubecol[j] [k] = _cubecol[i] [k];

glBindVertexArray (VAOs [object + i]);
int offset = object * numperobj;
int base = numobjects * numperobj;
glBindBuffer (GL_ARRAY BUFFER, buffers[Vertices + offset]);
glBufferData (GL_ARRAY BUFFER, sizevert, vert, GL_STATIC_ DRAW) ;
// Use layout location 0 for the vertices
glEnableVertexAttribArray (0) ;

glVertexAttribPointer (0, 3, GL_FLOAT, GL_FALSE, 3 *
sizeof (GLfloat), 0);

glBindBuffer (GL_ARRAY BUFFER, buffers[base + i]);
glEufferData(GL ARRAY BUFFER, sizeof (cubecol), cubecol,

AT amAmTA NDAW

Drawing with/without Colors

// BAnd a function to draw with them, similar to drawobject but with color
void drawcolor (GLuint object, GLuint color) {
glBindVertexArray (VAOs [object + color]);

glDrawElements (PrimType [object], NumElems[object], GL_UNSIGNED_BYTE,
0);

glBindVertexArray (0) ;

void drawobject (GLuint object) {
glBindVertexArray (VAOs [object]) ;

glDrawElements (PrimType [object], NumElems[object], GL_UNSIGNED_BYTE,
0);

glBindVertexArray (0) ;

void loadteapot() // See source code for details if interested

Outline
Review of demo from last lecture

Basic geometry setup for cubes (pillars), colors
Single geometric object, but multiple colors for pillars

Matrix Stacks and Transforms (draw 4 pillars)
Depth testing (Z-buffering)
Animation (moving teapot)

Texture Mapping (wooden floor)

Best source for OpenGL is the red book and GLSL book. Of course,

this is more a reference manual than a textbook, and you are better off
imnlamantinna rathar readina and tn and

Transformation

Matrix Stacks
Old OpenGL: glPushMatrix, glPopMatrix, glLoad, giMultMatrixf
Useful for hierarchically defined figures, placing pillars
Current recommendation is STL stacks managed yourself, which is
done in mytest2. (You must manage the stack yourself for HW 2).

Transforms
Write your own translate, scale, rotate for HW 1 and HW 2
Careful of OpenGL convention: In old-style, Right-multiply current
matrix (last is first applied). glm operators follow this sometimes.

Also gluLookAt (glm::lookAt), gluPerspective (glm::perspective)
Remember just matrix like any other transform, affecting modelview
See mytest for how to best implement these ideas

Drawing Pillars 2

// 3rd pillar
pushMatrix (modelview) ;
modelview = modelview * glm::translate(identity,
glm::vec3(0.4, 0.4, 0.0));
glUniformMatrix4fv (modelviewPos, 1, GL_FALSE,
& (modelview) [0] [0]) ;
drawcolor (CUBE, 2) ;
popMatrix (modelview) ;
// 4th pillar
pushMatrix (modelview) ;
modelview = modelview * glm::translate(identity, glm::vec3(-
0.4, 0.4, 0.0));
glUniformMatrix4fv (modelviewPos, 1, GL_FALSE,
& (modelview) [0] [0]) ;
drawcolor (CUBE, 3) ;
popMatrix (modelview) ;
// This function pops a matrix from the modelview stack void
popMatrix (glm: :matds mat) {
if (modelviewStack.size()) {
mat = glm::matd (modelviewStack.back());
modelviewStack.pop_back () ;

Object coords
(x y z w)t vertex
Normalized Devicej

- - Coordinates
Modelview matrix

[Object Transforms
and glm::lookAt]

Eye coordinates
(used for lighting)

Projection matrix
[3D to 2D, usually
glm::perspective]

Clip coordinates| Perspective Divide
(Dehomogenizatiol

Viewport Transform
(glViewport)

Window Coords

Drawing Pillars 1 (in display)

// 1lst pillar: Right-multiply modelview as in old OpenGL
pushMatrix (modelview) ; // push/pop functions for stack

modelview = modelview * flm: :translate(identity, glm
0.0)) ; // build transIation matrix

glUniformMatrix4fv (modelviewPos, 1, GL_ FALSE,
& (modelview) [0] [0]) ;

drawcolor (CUBE,

popMatrix (modelview) ;

[

// 2nd pillar
pushMatrix (modelview) ;

modelview = modelview * glm::translate(identity, glm
0.4, 0.0)) ; // build translation matrix

glUniformMatrix4fv (modelviewPos, 1, GL_FALSE,
& (modelview) [0] [0]) ;

drawcolor (CUBE, 1) ;

popMatrix (modelview) ;

::vec3(-0.4,

::vec3(0.4,

// Function pushes specified matrix onto the modelview stack

St e O) o

Demo 1
Does order of drawing matter?

What if | move floor after pillars in code?

Is this desirable? If not, what can | do about it?

Outline Double Buffering

Review of demo from last lecture
, . New primitives draw over (replace) old objects
Basic geometry setup for cubes (pillars), colors

Single geometric object, but multiple colors for pillars Can lead to jerky sensation

Matrix Stacks and Transforms (draw 4 pillars) Solution: double buffer. Render into back

Depth testing (Z-buffering) (offspreen) bqffer. When finished, swap buffers
to display entire image at once.

AOITESEM (T EEpe Changes in main and display

Texture Mapplng (WOOden f|00r') glutInitDisplayMode (GLUT DOUBLE | GLUT RGB | GLUT_ DEPTH) ;

glutSwapBuffers() ;
Best source for OpenGL is the red book and GLSL book. Of course,

this is more a reference manual than a textbook, and you are better off
imnlamantinna rathar readina and tn and

glFlush () ;

Turning on Depth test (Z-buffer)

OpenGL uses a Z-buffer for depth tests Demo 2
For each pixel, store nearest Z value (to camera) so far
If new fragment is closer, it replaces old z, color Does order of drawing matter any more?
[“less than” can be over-ridden in fragment program] ’

Simple technique to get accurate visibility What if | change near plane to 0?
(Be sure you know what fragments and pixels are)

i i 2 it?
Changes in main n, display to Z-buffer Is this desirable? If not, what can | do about it?

glutInitDisplayMode (GLUT DOUBLE | GLUT_RGB | GLUT_DEPTH);
glClear (GL_COLOR BUFFER BIT | GL_DEPTH BUFFER BIT);

In init function

glEnable (GL_DEPTH TEST) ;
glDepthFunc(GL LESS) ; // The default option

Outline

Review of demo from last lecture

Demo 3
Basic geometry setup for cubes (pillars), colors

Single geometric object, but multiple colors for pillars Notice how teapot cycles around
Matrix Stacks and Transforms (draw 4 pillars) And that | can pause and restart animation
Depth testing (Z-buffering) And do everything else (zoom etc.) while teapot
Animation (moving teapot) EVES 1) BEE ERELs
Texture Mapping (wooden floor)

Best source for OpenGL is the red book and GLSL book. Of course,

this is more a reference manual than a textbook, and you are better off
imnlementina rather readina end ta and

Drawing Teapot (in display)

// ** NEW ** Put a teapot in the middle that animates
pushMatrix (modelview) ;
modelview = modelview * glm::translate(identity,
glm: :vec3 (teapotloc, 0.0, 0.0));
// The following two transforms set up and center the teapot
// Transforms right-multiply the modelview matrix (top of the stack)
modelview = modelview * glm::translate(identity, glm::vec3(0.0,
0.0, 0.1));
modelview = modelview * glm::rotate(identity, glm::pi<float>() /
2.0£f, glm::vec3(1.0, 0.0, 0.0));
float size = 0.235f; // Teapot size
modelview = modelview * glm::scale(identity, glm::vec3(size, size,
size));
glUniformMatrix4fv (modelviewPos, 1, GL_FALSE, &(modelview) [0][0])
drawteapot() ;
popMatrix (modelview) ;

void drawteapot() {// drawteapot() function in geometry.h
glBindVertexArray (teapotVAO) ;
glDrawElements (GL_TRIANGLES, teapotIndices.size(),
GL_UNSIGNED_INT, 0);
alBindVertexArrav (0) ;}

Keyboard callback (p to pause)

GLint animate = 0 ; // ** NEW ** whether to animate or not

void keyboard (unsigned char key, int x, int y)
{
switch (key) {
case 27: // Escape to quit
exit(0) ;
break ;
case 'p': // ** NEW ** to pause/restart animation
animate = 'animate ;
if (animate) glutIdleFunc(animation) ;
else glutIdleFunc (NULL) ;
break ;
default:
break ;

New globals and basic setup

// In mytest3.cpp

GLubyte woodtexture[256] [256][3] ; // texture (from grsites.com)
GLuint texNames[l] ; // texture buffer

GLuint istex ; // blend parameter for texturing

GLuint islight ; // for lighting

GLint texturing = 1 ; // to turn on/off texturing

GLint lighting = 1 ; // to turn on/off lighting

// In Display
glUniformli (islight,0) ; // Turn off lighting (except on teapot, later)
glUniformli (istex, texturing) ;
drawtexture (FLOOR, texNames[0]) ; // Texturing floor

// drawobject (FLOOR) ;

glUniformli (istex,0) ; // Other items aren't textured

Simple Animation routine

// ** NEW ** in this assignment, is an animation of a teapot
// Hitting p will pause this animation; see keyboard callback

void animation (void) {
teapotloc = teapotloc + 0.005 ;
if (teapotloc > 0.5) teapotloc

glutPostRedisplay() ;
}

Outline

Review of demo from last lecture

Display lists (extend init for pillars)

Matrix stacks and transforms (draw 4 pillars)
Depth testing or z-buffering

Animation (moving teapot)

Texture mapping (wooden floor) [mytest3]

Simple Toggles for Keyboard

case 't': // ** NEW ** to turn on/off texturing ;
texturing = !texturing ;
glutPostRedisplay() ;
break ;
case 's': // ** NEW ** to turn on/off shading (always smooth)
lighting = !lighting ;
glutPostRedisplay () ;

break ;

Adding Visual Detail

Basic idea: use images instead of more
polygons to represent fine scale color variation

Setting up texture

inittexture ("wood.ppm", shaderprogram) ; // in init()

// Very basic code to read a ppm file
// And then set up buffers for texture coordinates
void inittexture (const char * filename, GLuint program) {
int i,3,k ;
FILE * fp ;
assert(fp = fopen(filename,"rb")) ;
fscanf (fp,"%$*s %*d %$*d %$*d¥*c") ;
for (i =0 ; i < 256 ; i++)
for (3 =0 ; j < 256 ; j++)
for (k =0 ; k < 3 ; k++)
fscanf (fp, "%c", & (woodtexture[i] [j] [k]))
fclose (fp)

Specifying the Texture Image

glTeximage2D(target, level, components, width, height,
border, format, type, data)

target is GL_TEXTURE_2D

level is (almost always) O

components = 3 or 4 (RGB/RGBA)

width/height MUST be a power of 2

border = 0 (usually)

format = GL_RGB or GL_RGBA (usually)

type = GL_UNSIGNED_BYTE, GL_FLOAT, etc...

Texture Mapping

Important topic: nearly all objects textured
Wood grain, faces, bricks and so on
Adds visual detail to scenes

Can be added in a fragment shader

Polygonal model With surface texture

Texture Coordinates

Each vertex must have a texture coordinate: pointer to texture.
Interpolate for pixels (each fragment has st)

// Set up Texture Coordinates
glGenTextures (1, texNames) ;
glBindVertexArray (VAOs [FLOOR]) ;
glBindBuffer (GL_ARRAY BUFFER, buffers[numobjects*numperobj+ncolors]) ;

glBufferData (GL ARRAY BUFFER, sizeof (floortex),
floortex,GL_STATIC DRAW) ;

// Use layout location 2 for texcoords
glEnableVertexAttribArray (2) ;
glVertexAttribPointer (2, 2, GL_FLOAT, GL_FALSE, 2 * sizeof (GLfloat), 0)

glActiveTexture (GL_TEXTUREO) ;
glEnable (GL_TEXTURE 2D) ;

glBindTexture (GL_TEXTURE 2D, texNames[0]) ;

Texture Image and Bind to Shader

glTexImage2D (GL_TEXTURE 2D,0,GL_RGB, 256, 256, 0, GL RGB,
GL_UNSIGNED BYTE, woodtexture) ;

glTexParameterf (GL_TEXTURE 2D, GL TEXTURE MAG FILTER,
GL_LINEAR) ; - - - - =

glTexParameterf (GL TEXTURE 2D, GL_TEXTURE MIN_FILTER,
GL_LINEAR) ;

glTexParameteri (GL TEXTURE 2D, GL_TEXTURE WRAP_S, GL_REPEAT)
glTexParameteri (GL TEXTURE 2D, GL_TEXTURE WRAP T, GL_REPEAT)

;

;

// Define a sampler. See page 709 in red book, 7th ed.
GLint texsampler ;

texsampler = glGetUniformLocation (program, "tex") ;
glUniformli (texsampler,0) ; // Could also be GL TEXTUREQ
istex = glGetUniformLocation (program,"istex")

Drawing with Texture

// And a function to draw with textures, similar to drawobject
void drawtexture (GLuint object, GLuint texture) ({
glBindTexture (GL_TEXTURE_2D, texture);
glBindVertexArray (VAOs [object]) ;

glDrawElements (PrimType [object], NumElems[object],
GL_UNSIGNED_BYTE, 0);

glBindVertexArray (0) ;

More on Texture (very b

Full lecture later in course
Optimizations for efficiency
Mipmapping
Filtering
Texture Coordinate generation
Texture Matrix
Environment Mapping

If very ambitious, read more in OpenGL

lllumination Maps

Quake introduced illumination maps or light
maps to capture]ighting effects i'n video games

Texture map: \

Texture map
+ light map:

Final Steps for Drawing (+Demo)
Vertex shader (just pass on texture coords)

out vec2 texcoord; // similar definitions for positions and normals
uniform int istex ;
void main() {
gl_Position = projection * modelview * vecd (position, 1.0f);
mynormal = mat3(transpose (inverse (modelview))) * normal ;
myvertex = modelview * vecd (position, 1.0f) ;
texcoord = vec2 (0.0, 0.0); // Default value just to prevent errors

if (istex != 0){ texcoord = texCoords;} }

Fragment shader (can be more complex blend)

uniform sampler2D tex ;
uniform int istex ;
void main (void) {

if (istex > 0) fragColor = texture(tex, texcoord) ;

Displacement Mapping

Environment Maps

Images from /l{lumination and Reflection Maps:

Simulated Objects in Simulated and Real Environments
Gene Miller and C. Robert Hoffman
SIGGRAPH 1984 “Advanced Computer Graphics Animation” Course Notes

Solid textures

Texture values indexed
by 3D location (x,y,z)

» Expensive storage, or

» Compute on the fly,
e.g. Perlin noise >

