Computer Graphics

CSE 167 [Win 24], Lecture 7: OpenGL Shading

Ravi Ramamoorthi

http://viscomp.ucsd.edu/classes/cse167/wi24

Methodology for Lecture

Lecture deals with lighting (DEMO for HW 2)

Briefly explain shaders used for mytest3
Do this before explaining code fully so you can start HW 2
Primarily explain with reference to source code

More formal look at lighting and shading possible
Will be discussed in more detail if you take CSE 168

Importance of Lighting

Important to bring out 3D appearance (compare
teapot now to in previous demo)

Important for correct shading under lights

The way shading is done also important
Flat: Entire face has single color (normal) from one vertex
Gouraud or smooth: Colors at each vertex, interpolate

glShadeModel(GL_FLAT) [old] glShadeModel(GL_SMOOTH) [old

To Do

This week'’s lectures have all info for HW 2
Start EARLY (milestone due Monday Feb 5)

Demo for mytest3

Lighting on teapot
Blue, red highlights
Diffuse shading
Texture on floor

Update as we move

Brief primer on Color

Red, Green, Blue primary colors
Can be thought of as vertices of a color cube
R+G = Yellow, B+G = Cyan, B+R = Magenta,
R+G+B = White
Each color channel (R,G,B) treated separately

RGBA 32 bit mode (8 bits per channel) often used
A is for alpha for transparency if you need it

Colors normalized to 0 to 1 range in OpenGL
Often represented as 0 to 255 in terms of pixel intensities

Also, color index mode (not so important)

Outline Vertex vs Fragment Shaders

Can use vertex or fragment shaders for lighting

Vertex computations interpolated by rasterizing

Types of lighting, materials and shading go;zrahuo(lj (smooth)tshadlm‘g as(in nlwytes|1 oolygon)
nghts POint and Directional at shading: no Iinterpolation snng e color of polygon

Shading: Ambient, Diffuse, Emissive, Specular Either compute colors at vertices, interpolate
This is standard in old-style OpenGL

Can be implemented with vertex shaders
Or interpolate normals etc. at vertices

L . And then shade at each pixel in fragment shader
Source code in dlsplay routine Phong shading (different from Phong illumination)
More accurate
Wireframe: glPolygonMode (GL_FRONT, GL_LINE)

Also, polygon offsets to superimpose wireframe
Hidden line elimination? (polygons in black...)

Gouraud and Phong shading (vertex vs fragment)

Fragment shader for mytest3
HW 2 requires a more general version of this

Gouraud Shading — Details Gouraud and Errors

| Y =Y) b= y) . ,
a V- ¥, I1 = 0 because (N dot E) is negative.
ey bl my.) I> = 0 because (N dot L) is negative.

Any interpolation of Iy and I> will be 0.

. . N area of
Actual implementation efficient: difference st

equations while scan converting highlight

Phong lllumination Model 2 Phongs make a Highlight

Specular or glossy materials: highlights .BeSideS the Phopg lllumination or Reflectance model, there
Polished floors, glossy paint, whiteboards is a Phong Shading model.
For plastics highlight is color of light source (not object) Phong Shading: Instead of interpolating the intensities
For metals, highlight depends on surface color between vertices, interpolate the normals.

Really, (blurred) reflections of light source The entire lighting calculation is performed for each pixel,
based on the interpolated normal. (Old OpenGL doesn’ t do

I. 3 this, but you can and will with current fragment shaders)
) 1) 4 . ,
* »"7'/ R o" 7
~ - ~d

Roughness

Examples and Color Plates OpenGL Rendering Pipeline (simple)

. Programmable in
See OpenGL color plates (earlier eds) and glsl book Modern GPUs Programmable in
(Vertex Shader) Modern GPUs

#'Geometry (Fragment

Vertices Primitive Shader)
Scan
Fragment

A Operations)) \
— Conversion oot
V (Rasterize) \ Operations

e | Pixel Texture %
9 | Operations | Memory

http:/iblog.cryos.net/categories/15-Avogadro/P3.html Traditional Approach: Fixed function pipeline (state machine)
http://blenderartists.org/forum/showthread.php?11430-Games-amp-Tutorials-(updated-Jan-5-2011) NeW Development (2003_) PrOgl’ammab|e p|pe|lne

Jsyngawel

Simple Vertex Shader in mytest3 Simple Vertex Shader in mytest3

#version 330 core // Do not use any version older than 330! //Outputs will be scan-converted/interpolated/gouraud shaded between
vertices and input to the fragment shader
// (myvertex, mynormal, texcoord)

// Inputs
//Think about why gl _Position and myvertex both needed. What’s diff?

void main() {
gl_Position = projection * modelview * vecd (position, 1.0f);
// Extra outputs, mynormal = mat3(transpose (inverse (modelview))) * normal ;
out vecd myvertex; myvertex = modelview * vecd (position, 1.0f) ;
out vec3 mynormal; texcoord = vec2 (0.0, 0.0); // Default value to prevent errors
if (istex !'= 0){

out vec2 texcoord;
texcoord = texCoords;

// Uniform variables
uniform mat4 projection;
uniform mat4 modelview;

uniform int istex ;

Outline Lighting and Shading

Gouraud and Phong shading (vertex vs fragment) Rest of this lecture considers lighting

Types of lighting, materials and shading L ol
g e In real world, complex lighting, materials interact
Shading: Ambient, Diffuse, Emissive, Specular We study this more formally in CSE 168

Fragment shader for mytest3 For now some basic approximations to capture
HW 2 requires a more general version of this key effects in lighting and shading

Source code in display routine Inspired by old OpenGL fixed function pipeline
But remember that” s not physically based

Types of Light Sources

Point
Position, Color 1
t t tten=——68o
Attenuation (quadratic model) atten PEVTIUTE

Attenuation
Usually assume no attenuation (not physically correct)
Quadratic inverse square falloff for point sources
Linear falloff for line sources (tube lights). Why?
No falloff for distant (directional) sources. Why?

Directional (w=0, infinite far away, no attenuation)

Spotlights (not considered in homework)
Spot exponent
Spot cutoff

Emissive Term

A _ g o
h C>4> = Emtssronmate”.a,
£ v, A

Only relevant for light sources when looking directly at them
» Gotcha: must create geometry to actually see light
» Emission does not in itself affect other lighting calculations

Diffuse and Specular Reflection Videos

Specular:

Steve Seitz UW 5 minute videos

Material Properties

Need normals (to calculate how much diffuse,

specular, find reflected direction and so on)
Usually specify at each vertex, interpolate
GLUT used to do it automatically for teapots etc
(we provide meshes with normals instead for you in hw 2)
Can do manually for parametric surfaces
Average face normals for more complex shapes

Four terms: Ambient, Diffuse, Specular, Emissive

Ambient Term

Hack to simulate multiple bounces, scattering of light

Assume light equally from all directions

A
Global constant N> =7
X%
Never have £ v, A

black pixels

| = Ambient

Diffuse Term

Rough matte (technically Lambertian) surfaces
Light reflects equally in all directions
N I~NeL

Diffuse Term

Rough matte (technically Lambertian) surfaces
Light reflects equally in all directions
I~NelL

= Z intensity .. * diffuse *atten, * [max (L - N,0)]

light i ‘material
i=0

Phong lllumination Model

Specular or glossy materials: highlights
Polished floors, glossy paint, whiteboards
For plastics highlight is color of light source (not object)
For metals, highlight depends on surface color

Really, (blurred) reflections of light source

HEHOHHN

Roughness

Phong Formula

I~(R-E)

Specular Term

Glossy objects, specular reflections

Light reflects close to mirror direction

¢

Idea of Phong lllumination
Find a simple way to create highlights that are view-
dependent and happen at about the right place
Not physically based

Use dot product (cosine) of eye and reflection of
light direction about surface normal

Alternatively, dot product of half angle and normal
Has greater physical backing. We use this form

Raise cosine lobe to some power to control
sharpness or roughness

Alternative: Half-Angle (Blinn-Phong)
I ~(N«H)

ST

I= Y intensity,,,,, * specular, * atten, * [max (N e H,0)]"""**

material
i=0

Diffuse and specular components for most materials

Demo in mytest3

What happens when we make surface less shiny?

OpenGL Rendering Pipeline (simple)

Verti

A

Programmable in
Modern GPUs Programmable in
(Vertex Shader) Modern GPUs
Geometry) (Fragment
ces— Primitive PR CLECED)
) Scan (e
Operations) .
g Conversion

o ,

Fragment
| Operations |

Jayngawel

T Pixel Texture
9 | Operations | Memory

Traditional Approach: Fixed function pipeline (state machine)
New Development (2003-): Programmable pipeline

Simple Vertex Shader in mytest3

//0utputs will be scan-converted/interpolated/gouraud shaded between
vertices and input to the fragment shader

// (myvertex, mynormal, texcoord)
//Think about why gl_Position and myvertex both needed. What’s diff?

void main() {
gl_Position = projection * modelview * vecd (position, 1.0f);
mynormal = mat3 (transpose (inverse (modelview))) * normal ;
myvertex = modelview * vecd (position, 1.0f) ;
texcoord = vec2 (0.0, 0.0); // Default value to prevent errors
if (istex != 0){
texcoord = texCoords;

Outline

Gouraud and Phong shading (vertex vs fragment)

Types of lighting, materials and shading
Lights: Point and Directional
Shading: Ambient, Diffuse, Emissive, Specular

Fragment shader for mytest3
HW 2 requires a more general version of this

Source code in display routine

Simple Vertex Shader in mytest3

#version 330 core // Do not use any version older than 330!

// Inputs

// Extra outputs, if any
out vecd myvertex;
out vec3 mynormal;

out vec2 texcoord;

// Uniform variables
uniform mat4 projection;
uniform mat4 modelview;

uniform int istex ;

Fragment Shader Setup

#version 330 core // Do not use any version older than 330!

// Inputs fragment shader are outputs of same name of vertex shader

// Output the frag color

out vecd fragColor;

uniform sampler2D tex ;
uniform int istex ;
uniform int islight ; // are we lighting.

uniform vec3 color;

Fragment Shader Variables

// Assume light 0 is directional, light 1 is a point light.
// Actual light values are passed from the main OpenGL program.

// ':I“}ixis could be fancier. My goal is to illustrate a simple
idea.

uniform vec3 lightOdirn ;
uniform vecd4 lightOcolor ;
uniform vecd4 lightlposn ;

uniform vecd4 lightlcolor ;

// Now, set the material parameters. These could be bound to
// a buffer. But for now, I'll just make them uniform.

// I use ambient, diffuse, specular, shininess.

// Bmbient is just additive and doesn't multiply the lights.
uniform vec4 ambient ;

uniform vecd diffuse ;

uniform vecd4 specular ;

uniform float shininess ;

Fragment Shader Main Transforms

void main (void)

{
if (istex > 0) fragColor = texture(tex, texcoord) ;
else if (islight 0) fragColor = vec4 (color, 1.0f)
else {

// They eye is always at (0,0,0) looking down -z axis

// Also compute current fragment position, direction to eye

const vec3 eyepos = vec3(0,0,0) ;

vec3 mypos = myvertex.xyz / myvertex.w ; // Dehomogenize

vec3 eyedirn = normalize (eyepos - mypos) ;

// Compute normal, needed for shading.

vec3 normal = normalize (mynormal) ;

Outline

Gouraud and Phong shading (vertex vs fragment)

Types of lighting, materials and shading
Lights: Point and Directional
Shading: Ambient, Diffuse, Emissive, Specular

Fragment shader for mytest3
HW 2 requires a more general version of this

Source code in display routine

Fragment Shader Compute Lighting

vec4 ComputeLight (const in vec3 direction, const in vecd

lightcolor, const in vec3 normal, const in vec3 halfvec, const
in vec4 mydiffuse, const in vec4 myspecular, const in float
myshininess) {

float nDotL = dot(normal, direction)
vecd lambert = mydiffuse * lightcolor * max (nDotL, 0.0)

float nDotH = dot(normal, halfvec) ;

vecd phong = myspecular * lightcolor * pow (max(nDotH,
0.0) , myshininess) ;

vecd retval = lambert + phong ;
return retval

Fragment Shader Main Routine

// Light 0, directional
vec3 direction0 = normalize (lightOdirn) ;
vec3 half0 = normalize (direction0 + eyedirn)

vecd col0 = ComputeLight(direction0, lightOcolor, normal,
half0, diffuse, specular, shininess) ;

// Light 1, point

vec3 position = lightlposn.xyz / lightlposn.w ;
vec3 directionl = normalize (position - mypos) ;
// no attenuation

vec3 halfl = normalize (directionl + eyedirn)

vecd coll = ComputeLight(directionl, lightlcolor, normal,
halfl, diffuse, specular, shininess) ;

fragColor = ambient + col0 + coll
}

Light Set Up (in display)

/* New for Demo 3; add lighting effects */
{
const GLfloat one[] = {1,1,1,1} ;

const GLfloat medium[] = {0.5£, 0.5f, 0.5£, 1};

const GLfloat small[] = {0.2f, 0.2f, 0.2f, 1};

const GLfloat high[] = {100} ;

const GLfloat zero[] = {0.0, 0.0, 0.0, 1.0} ;

const GLfloat light_specular[] = {1, 0.5, 0, 1};

const GLfloat light specularl[] = {0, 0.5, 1, 1};

const GLfloat light direction[] = {0.5, 0, 0, 0}; // Dir 1t
const GLfloat light positionl[] = {0, -0.5, 0, 1};

GLfloat 1light0[4], lightl[4] ;

// Set Light and Material properties for the teapot

// Lights are transformed by current modelview matrix.

// The shader can't do this globally. So we do so manually.
transformvec (light_direction, light0) ;

transformvec (light positionl, lightl) ;

Moving a Light Source Modelview Light Transform

Lights transform like other geometry

/* New helper transformation function to transform vector by

Only modelview matrix (not projection). The only real mESRAST &

. . N . . . void transformvec (const GLfloat input[4], GLfloat output[4])
application where the distinction is important
glm: :vecd inputvec (input[0], input[1l], input[2], input[3]);
Types Of Ilght motion glm: :vecd4 outputvec = modelview * inputvec;
Stationary: set the transforms to identity before specifying it output[0] = ocutputvec[0] ;
output[l] = outputvec[l];
Moving light: Push Matrix, move light, Pop Matrix output[2] = outputvec[2];
output[3] = outputvec[3];
Moving light source with viewpoint (attached to camera).
Can simply set light to 0 0 0 so origin wrt eye coords (make
modelview matrix identity before doing this)

Set up Lighting for Teapot Shader Mappings in init

glUniform3fv(lightOdirn, 1, light0) ;
glUniformdfv (lightOcolor, 1, light specular) ; vertexshader = initshaders(GL_VERTEX_SHADER, "shaders/light.vert") ;
lightly fragmentshader = initshaders (GL_FRAGMENT_SHADER, "shaders/light.frag") ;

glUniformdfv(lightlposn, 1, ;
.) X shaderprogram = initprogram(vertexshader, fragmentshader) ;
glUniformdfv(lightlcolor, 1, light specularl) ;
// glUniformdfv(lightlcolor, 1, zero) ;
// * NEW * Set up the shader parameter mappings properly for lighting.
islight = glGetUniformLocation(shaderprogram,"islight") ;
glUniform4fv (ambient,1,small) ; 1ightOdirn = glGetUniformLocation (shaderprogram,"lightOdirn") ;
glUniformdfv (diffuse,l,medium) ; lightOcolor = glGetUniformLocation(shaderprogram,"lightOcolor") ;
glUniform4fv (specular,1,one) ; lightlposn = glGetUniformLocation(shaderprogram,"lightlposn")

glUniformlfv (shininess,1,high) ; lightlcolor = glGetUniformLocation(shaderprogram,"lightlcolor"
ambient = glGetUniformLocation(shaderprogram,”ambient") ;

. . diffuse = glGetUniformLocation(shaderprogram,"diffuse")

// Enable and Disable everything around the teapot

specular = glGetUniformLocation(shaderprogram,"specular") ;

// Generally, we would also need to define normals etc. A)) Pos
shininess = glGetUniformLocation(shaderprogram,"shininess") ;

// But the teapot object file already defines these for us.
if (DEMO > 4)

glUniformli(islight,lighting) ; // lighting only teapot.

