Computer Graphics

CSE 167 [Win 24], Lecture 6: OpenGL 1

Ravi Ramamoorthi

http://viscomp.ucsd.edu/classes/cse167/wi24

Demo: Surreal (now 20+ years ago)

This Lecture

Introduction to OpenGL and simple demo code
mytest1.cpp ; you compiled mytest3.cpp for HW 0
Include skeleton code on all platforms for programs

| am going to show (maybe write) actual code
Online code helps you understand HW 2 better
ASK QUESTIONS if confused!!

Simple demo of mytest1 (and maybe hw2)

Discuss Basic Graphics Pipeline

This lecture deals with very basic OpenGL setup.

Next 2 lectures will likely be more interesting

To Do

HW 1 due on Friday

HW 2 (much) more difficult than HW 1
Will cover all needed material mostly Tue next week

START EARLY (this weekend itself)
Milestone (can do immediately) due on Feb 5

Outline

Basic idea about OpenGL

Basic setup and buffers

Matrix modes

Window system interaction and callbacks
Drawing basic OpenGL primitives

Initializing Shaders

Best source for OpenGL is the redbook. Of course, this is more a
reference manual than a textbook, and you are better off
implementing rather reading end to end.

Introduction to OpenGL

OpenGL is a graphics AP/
Portable software library (platform-independent)
Layer between programmer and graphics hardware
Uniform instruction set (hides different capabilities)

OpenGL can fit in many places
Between application and graphics system
Between higher level APl and graphics system

Why do we need OpenGL or an API?
Encapsulates many basic functions of 2D/3D graphics
Think of it as high-level language (C++) for graphics
History: Introduced SGI in 92, maintained by Khronos
Precursor for DirectX, WebGL, Java3D etc.

Outline

Basic idea about OpenGL

Basic setup and buffers

Matrix modes

Window system interaction and callbacks
Drawing basic OpenGL primitives

Initializing Shaders

Basic Setup (can copy; slight OS diffs)

int main(int argc, char** argv)

{
glutInit(&argc, argv);
// Requests the type of buffers (Single, RGB).
// Think about what buffers you would need...
glutInitDisplayMode (GLUT SINGLE | GLUT_RGB);
// Need to add GLUT_3_2_CORE_PROFILE for Apple/Mac OS
glutInitWindowSize (500, 500);
glutInitWindowPosition (100, 100);
glutCreateWindow ("Simple Demo with Shaders");
// glewInit(); // GLEW related stuff for non-Apple systems
init (); // Always initialize first

// Now, we define callbacks and functions for various tasks.
glutDisplayFunc (display) ;

glutReshapeFunc (reshape) ;

glutKeyboardFunc (keyboazd) ;

glutMouseFunc (mouse) ;

glutMotionFunc (mousedrag) ;

glutMainLoop(); // Start the main code

deleteBuffers(); //Termination. Delete buffers generated in init()

return 0; /* BNSI C requires main to return int. */

Programmer’ s View

Application
Application Graphics Package

OpenGL Application Programming Interface
Hardware and software (graphics card)
Output Device | | Input Device | | Input Device

Slide inspired by Greg Humphreys

Buffers and Window Interactions

Buffers: Color (front, back, left, right), depth (z),
accumulation, stencil. When you draw, you write
to some buffer (most simply, front and depth)

Buffers also used for vertices etc. Buffer data
and buffer arrays (will see in creating objects)

No window system interactions (for portability)

But can use GLUT / FreeGLUT (or Motif, GLX, Tcl/Tk)
Callbacks to implement mouse, keyboard interaction

Outline

Basic idea about OpenGL

Basic setup and buffers

Basic Graphics Pipeline and Matrix modes
Window system interaction and callbacks
Drawing basic OpenGL primitives

Initializing Shaders

OpenGL Rendering Pipeline (simple)

Programmable in

Modern GPUs Programmable in
(Vertex Shader) Modern GPUs
Geometry) (Fragment
Vertices Primitive — Shader)
Operations) e Fragment m
A S——— Conversion o X 3
V (Rasterize) |OpEEiEs E
o
c
g

N | Pixel ‘
9 | Operations |

Traditional Approach: Fixed function pipeline (state machine)
New Development (2003-): Programmable pipeline

Full OpenGL Pipeline

A - = —
Shader

Vertex Data

(Program) Primitive Setup

Clipping
Rasterization

Texture/lmage Data %_, Fragment _, Final Pixel Color
(Program) | Shader (Image)

User/program generates original vertices, textures

We cover programmable vertex and fragment shaders in course
OpenGL primitive setup, clipping, rasterization not programmable
Tessellation shaders take patches (splines) to output vertices
Geometry shaders process primitives, can add/remove geometry

More Detail: Typical Vertex Transforms

User Program

Object coords | CliP coordin.at_es» Perspective Divide
(x y zw)t vertex (Dehomogenization)

Normalized Device)
- - Coordinates
Modelview matrix
[Object Transforms Viewport Transform
and gim::lookAf] (glViewport)

Eye coordinates
(used for lighting)

Projection matrix Window Coords

[3D to 2D, usually
glm::perspective]

GPUs and Programmability

Since 2003, can write vertex/pixel shaders

Older fixed function pipeline deprecated, not taught
Like writing C programs (see OpenGL book)
Performance >> CPU (even used for non-graphics)

Operate in parallel on all vertices or fragments

Are teaching CSE 167 with programmable shaders
And modern OpenGL (3.1+) and GLSL 330+!

More Detail: Typical Vertex Transforms

Object coords | Clip coordinates|” perspective Divide
(x y z w)t vertex (Dehomogenization)

Normalized Devicej
- - Coordinates
Modelview matrix
[Object Transforms Viewport Transform
and glm::lookAt] (glViewport)

Eye coordinates
(used for lighting)

Projection matrix Window Coords

[3D to 2D, usually
glm::perspective

Basic (nop) vertex shader

In shaders/ nop.vert.glsl nop.frag.glsl
Written in GLSL (GL Shading Language)
Vertex Shader (out values, gl_Position interpolated to fragment)

version 330 core

// Do not modify the above version directive to anything older.

// Shader inputs
layout (location = 0)

layout (location = 1)

// shader outputs, if any

out vec3 Color; // also built-in vec 4 gl_Position ; This is interpolated
// Uniform variables

uniform mat4 modelview;

uniform mat4 projection;

void main() {
gl_Position = projection * modelview * vecd (position, 1.0f);

color; // Just forward this color to the fragment shader

Basic (nop) fragment shader

version 330 core

// Do not modify the version directive to anything older than 330.

// Fragment shader inputs are outputs of same name from vertex shader

// Uniform variables (none)

// Output

out vecd fragColor;

void main (void)
{
fragColor = vecd (Color, 1.0f);

Viewing in OpenGL
Inspired by old OpenGL. Now, only best practice, not requirement
You could do your own thing, but this is still the best way to develop viewing
Viewing consists of two parts
Object positioning: model view transformation matrix
View projection: projection transformation matrix
Old OpenGL (no longer supported/taught in 167), two matrix stacks
GL_MODELVIEW_MATRIX, GL_PROJECTION_MATRIX
Could push and pop matrices onto stacks

New OpenGL: Use C++ STL templates to make stacks as needed
e.g. stack <mat4> modelview ; modelview.push(mat4(1.0)) ;
GLM libraries replace many deprecated commands. Include mat4

Convention: camera always at the origin, pointing in the —z direction
Transformations move objects relative to the camera

In old OpenGL, Matrices are column-major and right-multiply top of
stack. (Last transform in code is first actually applied). In new GLM,
similarly (read the assignment notes and documentation).

Outline

Basic idea about OpenGL

Basic setup and buffers

Matrix modes

Window system interaction and callbacks
Drawing basic OpenGL primitives

Initializing Shaders

Outline

Basic idea about OpenGL

Basic setup and buffers

Matrix modes

Window system interaction and callbacks
Drawing basic OpenGL primitives

Initializing Shaders

Basic initialization code for viewing

#include <GL/glut.h> //also <GL/glew.h>; <GLUT/glut.h> for Mac OS

#include <stdlib.h> //also stdio.h, assert.h, glm, others

int mouseoldx, mouseoldy ; // For mouse motion
GLfloat eyeloc = 2.0 ; // Where to look from; initially 0 -2, 2
glm: :mat4 projection, modelview; // The mvp matrices themselves

void init (void)

{

/* select clearing color */.
glClearColor (0.0, 0.0, 0.0, 0.0);

initialize viewing values */
projection = glm::mat4 (1.0£); // The identity matrix

// Think about this. Why is the up vector not normalized?
modelview = glm::loakAt(glm::vec3(0,-eyeloc,eyeloc),

glm::vec3(0,0,0), glm::vec3(0,1,1)) ;

// (To be cont’d). Geometry and shader set up later ...

Window System Interaction

Not part of OpenGL
Toolkits (GLUT) available (red book: freeglut)

Callback functions for events
Keyboard, Mouse, etc.
Open, initialize, resize window
Similar to other systems (X, Java, etc.)

Our main func included
glutDisplayFunc (display) ;
glutReshapeFunc (reshape) ;
glutKeyboardFunc (keyboard) ;
glutMouseFunc (mouse) ;
glutMotionFunc (mousedrag) ;

Basic window interaction code

/* Defines what to do when various keys are pressed */
void keyboard (unsigned char key, int x, int y)
{
switch (key) {
case 27: // Escape to quit
exit(0)
break ;
default:
break ;
}
}

/* Reshapes the window appropriately */

void reshape (int w, int h)

{
glViewport (0, 0, (GLsizei) w, (GLsizei) h);
// Note that the field of view takes in a radian angle
projection = glm::perspective(30.0f / 180.0f * glm::pi<float>(),

(GLfloat)w / (GLfloat)h, 1.0£, 10.0f);

glUniformMatrix4fv (projectionPos,1l, GL_FALSE, &projection[0][0]);
// To send the projection matrix to the shader

Mouse drag (demo)

void mousedrag(int x, int y) {

int yloc = y - mouseoldy ; // We will use the y coord to

zoom in/out

eyeloc += 0.005*yloc ; // Where do we look from
if (eyeloc < 0) eyeloc = 0.0 ;

mouseoldy =y ;

/* Set the eye location */
modelview = glm::lookAt (glm , —eyeloc, eyeloc),
glm: :vec3(0, 0, 0), glm::vec3(0, 1, 1));
// Send the updated matrix over to the shader
glUniformMatrix4fv (modelviewPos,1,GL_FALSE, &modelview[0] [0]) ;

glutPostRedisplay() ;

New OpenGL Primitives (fewer)

AN/

Points Lines (also strips, loops)

A

Triangle Quad Strip

ARos— 2

Triangle Strip Triangle Fan

Mouse motion (demo)

Defines a Mouse callback to zoom in and out */
This is done by modifying gluLookAt =7
The actual motion is in mousedrag =7
mouse simply sets state for mousedrag =7
void mouse (int button, int state, int x, int y) {
if (button == GLUT_LEFT BUTTON) ({
if (state GLUT_UP) {
// Do Nothing ;
}
else if (state == GLUT_DOWN) {
mouseoldx = x ; mouseoldy =y ; // so we can move wrt x , y

}

}
else if (button == GLUT_ RIGHT_BUTTON && state == GLUT_DOWN)
{ // Reset gluLookAt
eyeloc = 2.0
modelview = gli lookAt (glm: :vec3 (0, -eyeloc, eyeloc),
glm::vec3(0, 0, 0), glm::vec3(0, 1, 1));
// Send the updated matrix to the shader
glUniformMatrix4fv (modelviewPos,1,GL_FALSE, émodelview[0] [0]) ;
glutPostRedisplay() ; // Redraw scene
}

Outline

Basic idea about OpenGL

Basic setup and buffers

Matrix modes

Window system interaction and callbacks
Drawing basic OpenGL primitives

Initializing Shaders

Geometry

Points (GL_POINTS)

Stored in Homogeneous coordinates

Line segments (GL_LINES)
Also (GL_LINE_STRIP, GL_LINE_LOOP)

Triangles (GL_TRIANGLES)
Also strips, fans (GL_TRIANGLE_STRIP, GL_TRIANGLE_FAN)

More complex primitives (GLUT): Sphere, teapot, cube,...
Must now be converted into triangles (which is what skeleton does)

Old OpenGL: Drawing

Enclose vertices between gIBegin() ... glEnd() pair
Can include normal C code and attributes like the colors

Inside are commands like glVertex3f, glColor3f
Attributes must be set before the vertex

Assembly line (pass vertices, transform, shade)
These are vertex, fragment shaders on current GPUs
Immediate Mode: Sent to server and drawn

Client-Server model (client generates vertices,

server draws) even if on same machine
glFlush() forces client to send network packet
glFinish() waits for ack, sparingly use synchronization

New OpenGL: Vertex Array Objects (next)

Modern OpenGL: Floor Specification

const GLfloat floorverts[4][3] =

{0.5, 0.5, 0.0}, {-0.5, 0.5, 0.0}, -0.5, 0.0}, {0.5, -
0.5, 0.0}

Y
const GLfloat floorcol[4][3] = {

{1.0, 0.0, 0.0}, {0.0, 1.0, 0.0}, {0.0, 0.0, 1.0}, {1.0, 1.0,
1.0}

Y
const GLubyte floorinds[1][6] = { {0, 1, 2, 0, 2, 3} } ; //tris
const GLfloat floorverts2[4][3] = {

{0.5, 0.5, 1.0}, {-0.5, 0.5, 1.0}, {-0.5, -0.5, 1.0}, {
0.5, 1.0}

Yo
const GLfloat floorcol2[4][3] = {

{1.0, 0.0, 0.0}, {1.0, 0.0, 0.0}, {1.0, 0.0, 0.0}, {1.0, 0.0,
0.0}

} ;i // all red and on top
const GLubyte floorinds2[1][6] = { {0, 1, 2, 0, 2, 3} } ; //tris

Modern OpenGL.: Initialize Buffers

void initobject (GLuint object, GLfloat * vert, GLint sizevert, GLfloat *
col, GLint sizecol, GLubyte * inds, GLint sizeind, GLenum type) {

int offset = object * numperobj;
glBindVertexArray (VAOs [object]) ;

glBindBuffer (GL_ARRAY_BUFFER, buffers[Vertices+toffset]) ;
glBufferData (GL_ARRAY_BUFFER, sizevert, vert,GL_STATIC_DRAW) ;
// Use layout location 0 for the vertices

glEnableVertexAttribArray (0) ;

glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 3 * sizeof (GLfloat), 0);

glBindBuffer (GL_ARRAY_BUFFER, buffers[Colors+offset]) ;

glBufferData (GL_ARRAY_BUFFER, sizecol, col,GL_STATIC_DRAW) ;

// Use layout location 1 for the colors

glEnableVertexAttribArray (1) ;

glVertexAttribPointer(l, 3, GL_FLOAT, GL_FALSE, 3 * sizeof (GLfloat),
glBindBuffer (GL_ELEMENT_ARRAY_BUFFER, buffers[Elements+offset]) ;
glBufferData (GL_ELEMENT_ARRAY BUFFER, sizeind, inds,GL_STATIC_DRAW) ;
PrimType[object] = type;

NumElems [object] = sizeind;

// Prevent further modification of this VAO by unbinding it
glBindVertexArray (0) ;

Old OpenGL: Drawing (not used)

void display (void)
{
glClear (GL_COLOR BUFFER BIT) ;

draw polygon (square) of unit length centered at the ori
This code draws each vertex in a different color.
The hardware will blend between them.
This is a useful debugging trick. I make sure each vertex
appears exactly where I expect it to appear.
glBegin (GL_POLYGON) ; (-,5, _5) (.5, .5)
glColor3f (1.0, 0.0, 0.0);
glVertex3f (0.5, 0 0.0); GREEN RED
glColor3f (0.0, 1. ;
glVertex3f (-0.5,
glColor3f (0.0, O.

glVertex3f (-0.5,
glColor3f (1.0, 1.0, 1.0);

glVertex3f (0.5, -0.5, 0.0); (_.5, __5) (_5‘ __5)

glEnd() ;

glFlush () ; BLUE WHITE

Modern OpenGL: Vertex Array Objects
const int numobjects = 2 ; // number of objects for buffer

const int numperobj = 3 ; // Vertices, colors, indices

GLuint VAOs[numobjects]; // A Vertex Array Object per object

GLuint buffers[numperobj*numobjects] ; // List of buffers geometric data
GLuint objects[numobjects]; // For each object

GLenum PrimType[numobjects];// Primitive Type (triangles, strips)

GLsizei NumElems[numobjects] ; // Number of geometric elements

// Floor Geometry is specified with a vertex array
enum {Vertices, Colors, Elements} ; // For arrays for object
enum {FLOOR, FLOOR2} ; // For objects, for the floor

In init below (creates buffer objects for later use)
glGenVertexArrays (numobjects, VAOs); //create unique identifiers
glGenBuffers (numperobj*numobjects, buffers); //and for buffers

void deleteBuffers() { // Like a destructor
glDeleteVertexArrays (numobjects, VAOs) ;

Modern OpenGL: Draw Vertex Object

void drawobject (GLuint object) {
glBindVertexArray (VAOs [object]) ;

1DrawElements (PrimType [object], NumElems[object],
E GL_UNggGI&EDEBYTI]E, 0); =g !

glBindVertexArray(0) ; //unbind

void display(void) {
glClear (GL_COLOR BUFFER BIT); // clear all pixels
drawobject (FLOOR) ;
drawobject (FLOOR2)
glFlush (); // start processing buffered OpenGL commands

Initialization for Drawing, Shading Demo (change colors)

#include "shaders.h"

GLuint vertexshader, fragmentshader, shaderprogram ; // shaders

// Initialization in init() for Drawing
glGenVertexArrays (numobjects, VAOs) ;

glGenBuffers (numperobj*numobjects, buffers) ;

initobject (FLOOR, (GLfloat *) floorverts, sizeof (floorverts), (GLfloat
*) floorcol, sizeof (floorcol), (GLubyte *) floorinds, sizeof
(floorinds) , GL TRIANGLES) ;

initobject (FLOOR2, (GLfloat *) floorverts2, sizeof (floorverts2),
(GLfloat *) floorcol2, sizeof (floorcol2), (GLubyte *) floorinds2,
sizeof (floorinds2), GL_TRIANGLES) ;

// In init() for Shaders, discussed next
vertexshader = initshaders (GL_VERTEX SHADER, "shaders/nop.vert") ;

fragmentshader = initshaders (GL_FRAGMENT SHADER, "shaders/nop.frag") ;

shaderprogram = initprogram(vertexshader, fragmentshader) ;

Outline

Basic idea about OpenGL

Basic setup and buffers

Matrix modes

Window system interaction and callbacks
Drawing basic OpenGL primitives

Initializing Shaders

Simplified OpenGL Pipeline

User specifies vertices (via vertex arrays)

For each vertex in parallel
OpenGL calls user-specified vertex shader:
Transform vertex (ModelView, Projection), other ops

For each primitive, OpenGL rasterizes
Generates a fragment for each pixel the fragment covers

For each fragment in parallel
OpenGL calls user-specified fragment shader:
Shading and lighting calculations (next lecture)
OpenGL handles z-buffer depth test unless overwritten

Modern OpenGL is “lite” basically just a rasterizer
“Real” action in user-defined vertex, fragment shaders

Full OpenGL Pipeline

A - = —
Shader

Vertex Data
(Program) Primitive Setup

Clipping
Rasterization

Texture/Image Data %_,
(T

Program)

_, Final Pixel Color
(Image)

User/program generates original vertices, textures

We cover programmable vertex and fragment shaders in course
OpenGL primitive setup, clipping, rasterization not programmable
Tessellation shaders take patches (splines) to output vertices
Geometry shaders process primitives, can add/remove geometry

Shader Setup

Initializing (shader itself discussed later)
Create shader (Vertex and Fragment)
Compile shader

Attach shader to program

Link program

Use program

Shader source is just sequence of strings

Similar steps to compile a normal program

Shader Initialization Code

GLuint initshaders (GLenum type, const char *filename) {
// Using GLSL shaders, OpenGL book, page 679 of 7" edition
GLuint shader = glCreateShader (type)

GLint compiled ;
string str = textFileRead (filename)
const GLchar * cstr = str.c_str() ;
glShaderSource (shader, 1, &cstr, NULL) ;
glCompileShader (shader) ;
glGetShaderiv (shader, GL COMPILE STATUS, &compiled) ;
if ('compiled) {
shadererrors (shader)
throw 3 ;
}

cout<<"Shader file " <<filename<<" successfully
compiled. ”"<<endl;

return shader ;

}

Basic (nop) vertex shader

In shaders/ nop.vert.gls| nop.frag.glsl
Written in GLSL (GL Shading Language)
Vertex Shader (out values, gl_Position interpolated to fragment)

version 330 core

// Do not modify the above version directive to anything older

// Shader inputs

layout (location = 0)

layout (location = 1)

// Shader outputs, if any

out vec3 Color; // also built-in vec 4 gl_Position This is interpolated
// Uniform variables

uniform matd modelview;

uniform matd projection;

void main() {

gl_p

More Detail: Typical Vertex Transforms
User Program
Object coords | CliP coordin.at_es»
(x y zw)t vertex
Normalized Device}

- - Coordinates
Modelview matrix

Linking Shader Program

GLuint initprogram (GLuint vertexshader, GLuint fragmentshader)
{
GLuint program = glCreateProgram()
GLint linked ;
glAttachShader (program, vertexshader)
glAttachShader (program, fragmentshader) ;
glLinkProgram(program) ;
glGetProgramiv (program, GL_LINK STATUS, &linked) ;
if (linked) glUseProgram(program) ;
else {
programerrors (program) ;
throw 4 ;
}

cout<<"Shader program successfully attached and linked." <<
endl;

return program ;

}

More Detail: Typical Vertex Transforms

Object coords | Clip coordinates|” perspective Divide
(x y z w)t vertex (Dehomogenization)

Normalized Devicej

- - Coordinates
Modelview matrix

[Object Transforms
and glm::lookAt]
Eye coordinates
(used for lighting)
Projection matrix Window Coords

[3D to 2D, usually
glm::perspective

Basic (nop) fragment shader

version 330 core

// Do not modify the version directive to anything older than 330.

// Fragment shader inputs are outputs of same name from vertex shader

// Uniform variables (none)

[Object Transforms
and glm::lookAt] // output

out vecd fragColor;

Eye coordinates
(used for lighting) void main (void)
Projection matrix Window Coords {

[3D to 2D, usually
glm::perspective]

fragColor = vecd (Color, 1.0f);

