

Computer Graphics

CSE 167 [Win 24], Lecture 4: Transformations 2

Ravi Ramamoorthi

<http://viscomp.ucsd.edu/classes/cse167/wi24>

1

Outline

- Translation: Homogeneous Coordinates
- Combining Transforms: Scene Graphs
- Transforming Normals
- Rotations revisited: coordinate frames
- gluLookAt (quickly)

3

Homogeneous Coordinates

- Add a fourth homogeneous coordinate ($w=1$)
- 4x4 matrices very common in graphics, hardware
- Last row always 0 0 0 1 (until next lecture)

$$\begin{pmatrix} x' \\ y' \\ z' \\ w' \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 5 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix} = \begin{pmatrix} x+5 \\ y \\ z \\ 1 \end{pmatrix}$$

5

To Do

- Start doing HW 1
 - Time is short, but needs only little code [Due Jan 26]
 - Ask questions or clear misunderstandings by next lecture
- Specifics of HW 1
 - Last lecture covered basic material on transformations in 2D
 - Likely need this lecture to understand full 3D transformations
 - Last lecture had full derivation of 3D rotations.
 - You only need final formula
 - gluLookAt derivation this lecture helps clarifying some ideas
- Read and post on Piazza re questions
- Any remaining issues with UCSD online graders, submission of homeworks?

2

Translation

- E.g. move x by +5 units, leave y, z unchanged
- We need appropriate matrix. What is it?

$$\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} ? & & ? \\ ? & ? & ? \\ ? & ? & ? \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x+5 \\ y \\ z \end{pmatrix}$$

Transformations game demo

4

Representation of Points (4-Vectors)

Homogeneous coordinates

$$\begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix} = \begin{pmatrix} x/w \\ y/w \\ z/w \\ 1 \end{pmatrix}$$

- Divide by 4th coord (w) to get $P = \begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix} = \begin{pmatrix} x/w \\ y/w \\ z/w \\ 1 \end{pmatrix}$ (inhomogeneous) point
- Multiplication by $w > 0$, no effect
- Assume $w \geq 0$. For $w > 0$, normal finite point. For $w = 0$, point at infinity (used for vectors to stop translation)

6

Advantages of Homogeneous Coords

- Unified framework for translation, viewing, rot...
- Can concatenate any set of transforms to 4x4 matrix
- No division (as for perspective viewing) till end
- Simpler formulas, no special cases
- Standard in graphics software, hardware

7

General Translation Matrix

$$T = \begin{pmatrix} 1 & 0 & 0 & T_x \\ 0 & 1 & 0 & T_y \\ 0 & 0 & 1 & T_z \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} I_3 & T \\ 0 & 1 \end{pmatrix}$$

$$P' = TP = \begin{pmatrix} 1 & 0 & 0 & T_x \\ 0 & 1 & 0 & T_y \\ 0 & 0 & 1 & T_z \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix} = \begin{pmatrix} x + T_x \\ y + T_y \\ z + T_z \\ 1 \end{pmatrix} = P + T$$

8

Combining Translations, Rotations

- Order matters!! TR is not the same as RT (demo)
- General form for rigid body transforms
- We show rotation first, then translation (commonly used to position objects) on next slide. Slide after that works it out the other way
- Demos with applet, homework 1

9

Combining Translations, Rotations

$$P' = (TR)P = MP = RP + T$$

$$M = \begin{pmatrix} 1 & 0 & 0 & T_x \\ 0 & 1 & 0 & T_y \\ 0 & 0 & 1 & T_z \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} R_{11} & R_{12} & R_{13} & 0 \\ R_{21} & R_{22} & R_{23} & 0 \\ R_{31} & R_{32} & R_{33} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} R_{11} & R_{12} & R_{13} & T_x \\ R_{21} & R_{22} & R_{23} & T_y \\ R_{31} & R_{32} & R_{33} & T_z \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} R & T \\ 0 & 1 \end{pmatrix}$$

Transformations game demo

10

Combining Translations, Rotations

$$P' = (RT)P = MP = R(P + T) = RP + RT$$

$$M = \begin{pmatrix} R_{11} & R_{12} & R_{13} & 0 \\ R_{21} & R_{22} & R_{23} & 0 \\ R_{31} & R_{32} & R_{33} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & T_x \\ 0 & 1 & 0 & T_y \\ 0 & 0 & 1 & T_z \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} R_{3 \times 3} & R_{3 \times 3} T_{3 \times 1} \\ 0_{1 \times 3} & 1 \end{pmatrix}$$

Transformations game demo

11

Affine Transforms Video

- https://www.youtube.com/watch?v=AheaTd_I5ls&list=PLWfDJ5nla8UpwShx-izLJqcp575fKpsSO&index=3
- Steve Seitz (at UW) 5 minute videos

12

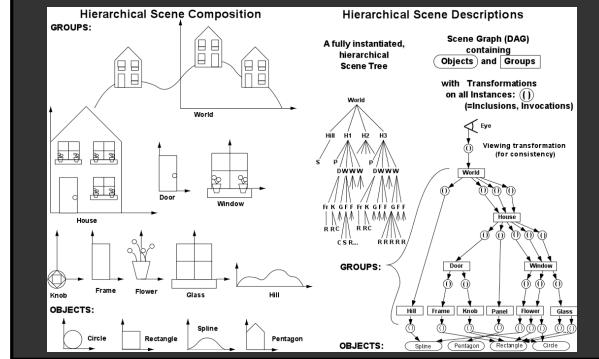
Outline

- Translation: Homogeneous Coordinates
- *Combining Transforms: Scene Graphs*
- Transforming Normals
- Rotations revisited: coordinate frames
- gluLookAt (quickly)

Slides for this part courtesy Prof. O' Brien

13

Hierarchical Scene Graph



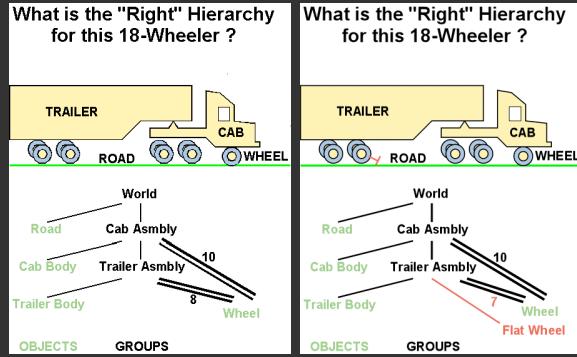
14

Drawing a Scene Graph

- Draw scene with pre-and-post-order traversal
 - Apply node, draw children, undo node if applicable
- Nodes can carry out any function
 - Geometry, transforms, groups, color, ...
- Requires stack to “undo” post children
 - Transform stacks in OpenGL
- Caching and instancing possible
- Instances make it a DAG, not strictly a tree

15

Example Scene-Graphs



16

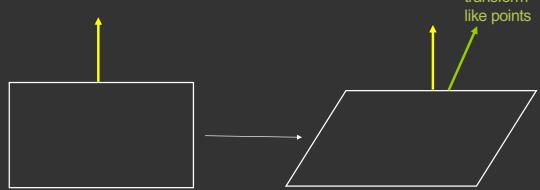
Outline

- Translation: Homogeneous Coordinates
- Combining Transforms: Scene Graphs
- *Transforming Normals*
- Rotations revisited: coordinate frames
- gluLookAt (quickly)

17

Normals

- Important for many tasks in graphics like lighting
- Do not transform like points e.g. shear
- Algebra tricks to derive correct transform



18

Finding Normal Transformation

$$t \rightarrow Mt \quad n \rightarrow Qn \quad Q = ?$$

$$n^T t = 0$$

$$n^T Q^T M t = 0 \Rightarrow Q^T M = I$$

$$Q = (M^{-1})^T$$

19

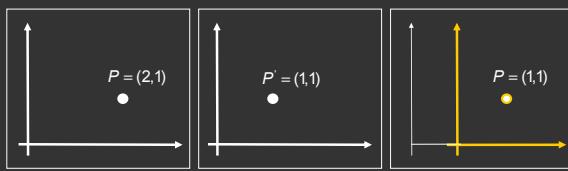
Outline

- Translation: Homogeneous Coordinates
- Combining Transforms: Scene Graphs
- Transforming Normals
- *Rotations revisited: coordinate frames*
- gluLookAt (quickly)

20

Coordinate Frames

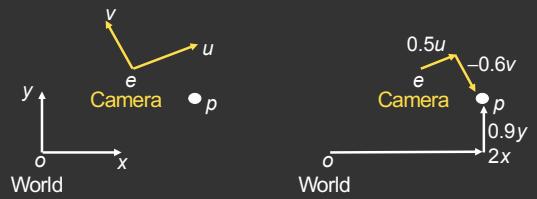
- All of discussion in terms of operating on points
- But can also change coordinate system
- Example, motion means either point moves backward, or coordinate system moves forward



21

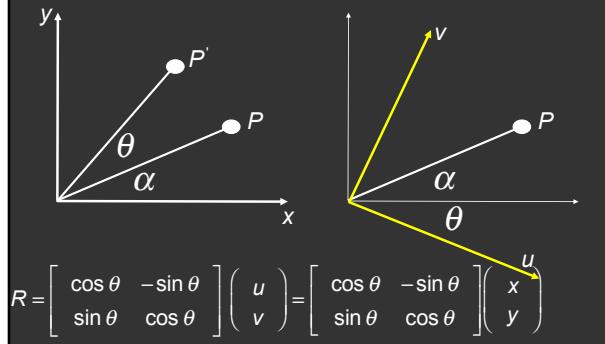
Coordinate Frames: In general

- Can differ both origin and orientation (e.g. 2 people)
- One good example: World, camera coord frames (H1)



22

Coordinate Frames: Rotations



23

Outline

- Translation: Homogeneous Coordinates
- Combining Transforms: Scene Graphs
- Transforming Normals
- *Rotations revisited: coordinate frames*
- gluLookAt (quickly)

24

Geometric Interpretation 3D Rotations

- Rows of matrix are 3 unit vectors of new coord frame
- Can construct rotation matrix from 3 orthonormal vectors

$$R_{uvw} = \begin{pmatrix} x_u & y_u & z_u \\ x_v & y_v & z_v \\ x_w & y_w & z_w \end{pmatrix} \quad u = x_u X + y_u Y + z_u Z$$

25

Axis-Angle formula (summary)

$$(b \setminus a)_{ROT} = (I_{3 \times 3} \cos \theta - a a^T \cos \theta) b + (A^* \sin \theta) b$$

$$(b \rightarrow a)_{ROT} = (a a^T) b$$

$$R(a, \theta) = I_{3 \times 3} \cos \theta + a a^T (1 - \cos \theta) + A^* \sin \theta$$

$$R(a, \theta) = \cos \theta \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} + (1 - \cos \theta) \begin{pmatrix} x^2 & xy & xz \\ xy & y^2 & yz \\ xz & yz & z^2 \end{pmatrix} + \sin \theta \begin{pmatrix} 0 & -z & y \\ z & 0 & -x \\ -y & x & 0 \end{pmatrix}$$

26

Outline

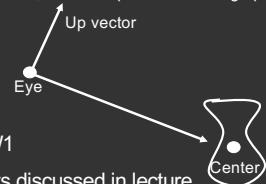
- Translation: Homogeneous Coordinates
- Combining Transforms: Scene Graphs
- Transforming Normals
- Rotations revisited: coordinate frames
- gluLookAt (quickly)*

27

Case Study: Derive gluLookAt

Defines camera, fundamental to how we view images

- gluLookAt(eyex, eyey, eyez, centerx, centery, centerz, upx, upy, upz)
- Camera is at eye, looking at center, with the up direction being up



- May be important for HW1
- Combines many concepts discussed in lecture
- Core function in OpenGL for later assignments

28

Steps

- gluLookAt(eyex, eyey, eyez, centerx, centery, centerz, upx, upy, upz)
- Camera is at eye, looking at center, with the up direction being up
- First, create a coordinate frame for the camera*
- Define a rotation matrix
- Apply appropriate translation for camera (eye) location

29

Constructing a coordinate frame?

We want to associate **w** with **a**, and **v** with **b**

- But **a** and **b** are neither orthogonal nor unit norm
- And we also need to find **u**

$$w = \frac{a}{\|a\|}$$

$$u = \frac{b \times w}{\|b \times w\|}$$

$$v = w \times u$$

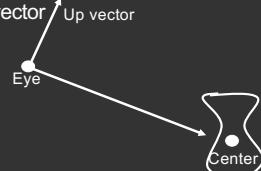
from lecture 2

30

Constructing a coordinate frame

$$w = \frac{a}{\|a\|} \quad u = \frac{b \times w}{\|b \times w\|} \quad v = w \times u$$

- We want to position camera at origin, looking down -Z dirn
- Hence, vector **a** is given by **eye** – **center**
- The vector **b** is simply the **up** vector



31

Steps

- `gluLookAt(eyex, eyey, eyez, centerx, centery, centerz, upx, upy, upz)`
- Camera is at eye, looking at center, with the up direction being up
- First, create a coordinate frame for the camera
- *Define a rotation matrix*
- Apply appropriate translation for camera (eye) location

32

Geometric Interpretation 3D Rotations

- Rows of matrix are 3 unit vectors of new coord frame
- Can construct rotation matrix from 3 orthonormal vectors

$$R_{uvw} = \begin{pmatrix} x_u & y_u & z_u \\ x_v & y_v & z_v \\ x_w & y_w & z_w \end{pmatrix} \quad u = x_u X + y_u Y + z_u Z$$

33

Steps

- `gluLookAt(eyex, eyey, eyez, centerx, centery, centerz, upx, upy, upz)`
- Camera is at eye, looking at center, with the up direction being up
- First, create a coordinate frame for the camera
- *Define a rotation matrix*
- *Apply appropriate translation for camera (eye) location*

34

Translation

- `gluLookAt(eyex, eyey, eyez, centerx, centery, centerz, upx, upy, upz)`
- Camera is at eye, looking at center, with the up direction being up
- *Cannot* apply translation after rotation
- The translation must come first (to bring camera to origin) before the rotation is applied

35

Combining Translations, Rotations

$$P' = (RT)P = MP = R(P + T) = RP + RT$$

$$M = \begin{pmatrix} R_{11} & R_{12} & R_{13} & 0 \\ R_{21} & R_{22} & R_{23} & 0 \\ R_{31} & R_{32} & R_{33} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & T_x \\ 0 & 1 & 0 & T_y \\ 0 & 0 & 1 & T_z \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} R_{3 \times 3} & R_{3 \times 3} T_{3 \times 1} \\ 0_{4 \times 3} & 1 \end{pmatrix}$$

36

gluLookAt final form

$$\begin{pmatrix} x_u & y_u & z_u & 0 \\ x_v & y_v & z_v & 0 \\ x_w & y_w & z_w & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & -\mathbf{e}_x \\ 0 & 1 & 0 & -\mathbf{e}_y \\ 0 & 0 & 1 & -\mathbf{e}_z \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
$$\begin{pmatrix} x_u & y_u & z_u & -x_u\mathbf{e}_x - y_u\mathbf{e}_y - z_u\mathbf{e}_z \\ x_v & y_v & z_v & -x_v\mathbf{e}_x - y_v\mathbf{e}_y - z_v\mathbf{e}_z \\ x_w & y_w & z_w & -x_w\mathbf{e}_x - y_w\mathbf{e}_y - z_w\mathbf{e}_z \\ 0 & 0 & 0 & 1 \end{pmatrix}$$