
1

Computer Graphics

CSE 167 [Win 24], Lecture 4: Transformations 2

Ravi Ramamoorthi
http://viscomp.ucsd.edu/classes/cse167/wi24

1

To Do

§ Start doing HW 1
§ Time is short, but needs only little code [Due Jan 26]
§ Ask questions or clear misunderstandings by next lecture

§ Specifics of HW 1
§ Last lecture covered basic material on transformations in 2D

Likely need this lecture to understand full 3D transformations

§ Last lecture had full derivation of 3D rotations.
You only need final formula

§ gluLookAt derivation this lecture helps clarifying some ideas

§ Read and post on Piazza re questions
§ Any remaining issues with UCSD online graders,

submission of homeworks?

2

Outline

§ Translation: Homogeneous Coordinates

§ Combining Transforms: Scene Graphs

§ Transforming Normals

§ Rotations revisited: coordinate frames

§ gluLookAt (quickly)

3

Translation

§ E.g. move x by +5 units, leave y, z unchanged

§ We need appropriate matrix. What is it?

x '
y '
z '

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
= ?
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

x
y
z

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
=

x + 5
y
z

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

Transformations game demo

4

Homogeneous Coordinates

§ Add a fourth homogeneous coordinate (w=1)

§ 4x4 matrices very common in graphics, hardware

§ Last row always 0 0 0 1 (until next lecture)

x '
y '
z '

w '

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=

1 0 0 5
0 1 0 0
0 0 1 0
0 0 0 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

x
y
z
1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=

x + 5
y
z
1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

5

Representation of Points (4-Vectors)

Homogeneous coordinates

§ Divide by 4th coord (w) to get
(inhomogeneous) point

§ Multiplication by w > 0, no effect

§ Assume w ≥ 0. For w > 0, normal
finite point. For w = 0, point at infinity
(used for vectors to stop translation)

P =

x
y
z
w

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=

x / w
y / w
z / w

1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

6

2

Advantages of Homogeneous Coords

§ Unified framework for translation, viewing, rot…

§ Can concatenate any set of transforms to 4x4 matrix

§ No division (as for perspective viewing) till end

§ Simpler formulas, no special cases

§ Standard in graphics software, hardware

7

General Translation Matrix

T =

1 0 0 Tx

0 1 0 Ty

0 0 1 Tz

0 0 0 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

=
I3 T

0 1

⎛

⎝
⎜

⎞

⎠
⎟

P ' =TP =

1 0 0 Tx

0 1 0 Ty

0 0 1 Tz

0 0 0 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

x
y
z
1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=

x +Tx

y +Ty

z +Tz

1

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

= P +T

8

Combining Translations, Rotations

§ Order matters!! TR is not the same as RT (demo)

§ General form for rigid body transforms

§ We show rotation first, then translation (commonly
used to position objects) on next slide. Slide after
that works it out the other way

§ Demos with applet, homework 1

9

Combining Translations, Rotations

 P ' = (TR)P = MP = RP +T

M =

1 0 0 Tx

0 1 0 Ty

0 0 1 Tz

0 0 0 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

R11 R12 R13 0

R21 R22 R23 0

R31 R32 R33 0

0 0 0 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

=

R11 R12 R13 Tx

R21 R22 R23 Ty

R31 R32 R33 Tz

0 0 0 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

= R T
0 1

⎛

⎝⎜
⎞

⎠⎟

Transformations game demo

10

Combining Translations, Rotations

 P ' = (RT)P = MP = R(P +T) = RP +RT

M =

R11 R12 R13 0

R21 R22 R23 0

R31 R32 R33 0

0 0 0 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

1 0 0 Tx

0 1 0 Ty

0 0 1 Tz

0 0 0 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

=
R3×3 R3×3T3×1

01×3 1

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

Transformations game demo

11

Affine Transforms Video

§ https://www.youtube.com/watch?v=AheaTd_l5Is
&list=PLWfDJ5nla8UpwShx-
lzLJqcp575fKpsSO&index=3

§ Steve Seitz (at UW) 5 minute videos

12

3

Outline

§ Translation: Homogeneous Coordinates

§ Combining Transforms: Scene Graphs

§ Transforming Normals

§ Rotations revisited: coordinate frames

§ gluLookAt (quickly)

Slides for this part courtesy Prof. O’Brien

13

Hierarchical Scene Graph

14

Drawing a Scene Graph

§ Draw scene with pre-and-post-order traversal
§ Apply node, draw children, undo node if applicable

§ Nodes can carry out any function
§ Geometry, transforms, groups, color, …

§ Requires stack to “undo” post children
§ Transform stacks in OpenGL

§ Caching and instancing possible

§ Instances make it a DAG, not strictly a tree

15

Example Scene-Graphs

16

Outline

§ Translation: Homogeneous Coordinates

§ Combining Transforms: Scene Graphs

§ Transforming Normals

§ Rotations revisited: coordinate frames

§ gluLookAt (quickly)

17

Normals
§ Important for many tasks in graphics like lighting

§ Do not transform like points e.g. shear

§ Algebra tricks to derive correct transform Incorrect to
transform
like points

18

4

Finding Normal Transformation

 t → Mt n→Qn Q = ?

 n
Tt = 0

 n
TQTMt = 0 ⇒ QTM = I

 Q = (M −1)T

19

Outline

§ Translation: Homogeneous Coordinates

§ Combining Transforms: Scene Graphs

§ Transforming Normals

§ Rotations revisited: coordinate frames

§ gluLookAt (quickly)

20

Coordinate Frames
§ All of discussion in terms of operating on points

§ But can also change coordinate system

§ Example, motion means either point moves
backward, or coordinate system moves forward

 P = (2,1) P
' = (1,1) P = (1,1)

21

Coordinate Frames: In general
§ Can differ both origin and orientation (e.g. 2 people)

§ One good example: World, camera coord frames (H1)

 o x

 y
 e

 u
 v

World

Camera p

 o 2x
 0.9y

 e
 0.5u

 −0.6v

World

Camera p

22

Coordinate Frames: Rotations

 x

 y

 P

 P '

θ

R =

cosθ −sinθ
sinθ cosθ

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 P

α α
θ

 v

 u

u
v

⎛

⎝⎜
⎞

⎠⎟
=

cosθ −sinθ
sinθ cosθ

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

x
y

⎛

⎝
⎜

⎞

⎠
⎟

23

Outline

§ Translation: Homogeneous Coordinates

§ Combining Transforms: Scene Graphs

§ Transforming Normals

§ Rotations revisited: coordinate frames

§ gluLookAt (quickly)

24

5

Geometric Interpretation 3D Rotations

§ Rows of matrix are 3 unit vectors of new coord frame
§ Can construct rotation matrix from 3 orthonormal vectors

Ruvw =

xu yu zu

xv yv zv

xw yw zw

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

u = xu X + yuY + zuZ

25

Axis-Angle formula (summary)

 (b \ a)ROT = (I3×3 cosθ − aaT cosθ)b + (A* sinθ)b

 (b→ a)ROT = (aaT)b

 R(a,θ) = I3×3 cosθ + aaT (1− cosθ)+ A* sinθ

R(a,θ) = cosθ
1 0 0
0 1 0
0 0 1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ + (1− cosθ)

x2 xy xz

xy y 2 yz

xz yz z2

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
+ sinθ

0 −z y
z 0 −x
−y x 0

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

26

Outline

§ Translation: Homogeneous Coordinates

§ Combining Transforms: Scene Graphs

§ Transforming Normals

§ Rotations revisited: coordinate frames

§ gluLookAt (quickly)

27

Case Study: Derive gluLookAt

Defines camera, fundamental to how we view images
§ gluLookAt(eyex, eyey, eyez, centerx, centery, centerz, upx, upy, upz)

§ Camera is at eye, looking at center, with the up direction being up

§ May be important for HW1

§ Combines many concepts discussed in lecture

§ Core function in OpenGL for later assignments

Eye

Up vector

Center

28

Steps

§ gluLookAt(eyex, eyey, eyez, centerx, centery, centerz, upx, upy, upz)

§ Camera is at eye, looking at center, with the up direction being up

§ First, create a coordinate frame for the camera

§ Define a rotation matrix

§ Apply appropriate translation for camera (eye) location

29

Constructing a coordinate frame?

We want to associate w with a, and v with b
§ But a and b are neither orthogonal nor unit norm
§ And we also need to find u

u = b ×w

b ×w

 v = w × u

from lecture 2

w = a

a

30

6

Constructing a coordinate frame

§ We want to position camera at origin, looking down –Z dirn

§ Hence, vector a is given by eye – center
§ The vector b is simply the up vector

u = b ×w

b ×w v = w × u

Eye

Up vector

Center

w = a

a

31

Steps

§ gluLookAt(eyex, eyey, eyez, centerx, centery, centerz, upx, upy, upz)

§ Camera is at eye, looking at center, with the up direction being up

§ First, create a coordinate frame for the camera

§ Define a rotation matrix

§ Apply appropriate translation for camera (eye) location

32

Geometric Interpretation 3D Rotations

§ Rows of matrix are 3 unit vectors of new coord frame
§ Can construct rotation matrix from 3 orthonormal vectors

Ruvw =

xu yu zu

xv yv zv

xw yw zw

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

u = xu X + yuY + zuZ

33

Steps

§ gluLookAt(eyex, eyey, eyez, centerx, centery, centerz, upx, upy, upz)

§ Camera is at eye, looking at center, with the up direction being up

§ First, create a coordinate frame for the camera

§ Define a rotation matrix

§ Apply appropriate translation for camera (eye) location

34

Translation

§ gluLookAt(eyex, eyey, eyez, centerx, centery, centerz, upx, upy, upz)

§ Camera is at eye, looking at center, with the up direction being up

§ Cannot apply translation after rotation

§ The translation must come first (to bring camera to
origin) before the rotation is applied

35

Combining Translations, Rotations

 P ' = (RT)P = MP = R(P +T) = RP +RT

M =

R11 R12 R13 0

R21 R22 R23 0

R31 R32 R33 0

0 0 0 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

1 0 0 Tx

0 1 0 Ty

0 0 1 Tz

0 0 0 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

=
R3×3 R3×3T3×1

01×3 1

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

36

7

gluLookAt final form

xu yu zu 0

xv yv zv 0

xw yw zw 0

0 0 0 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

1 0 0 −ex

0 1 0 −ey

0 0 1 −ez

0 0 0 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

xu yu zu −xuex − yuey − zuez

xv yv zv −xvex − yvey − zvez

xw yw zw −xwex − ywey − zwez

0 0 0 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

37

