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Computer Graphics

CSE 167 [Win 24], Lecture 4: Transformations 2

Ravi Ramamoorthi
http://viscomp.ucsd.edu/classes/cse167/wi24
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To Do

§ Start doing HW 1
§ Time is short, but needs only little code [Due Jan 26]
§ Ask questions or clear misunderstandings by next lecture

§ Specifics of HW 1
§ Last lecture covered basic material on transformations in 2D  

Likely need this lecture to understand full 3D transformations

§ Last lecture had full derivation of 3D rotations.                             
You only need final formula

§ gluLookAt derivation this lecture helps clarifying some ideas

§ Read and post on Piazza re questions
§ Any remaining issues with UCSD online graders, 

submission of homeworks?

2

Outline

§ Translation: Homogeneous Coordinates

§ Combining Transforms: Scene Graphs

§ Transforming Normals

§ Rotations revisited: coordinate frames

§ gluLookAt (quickly)
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Translation

§ E.g. move x by +5 units, leave y, z unchanged

§ We need appropriate matrix.  What is it?
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Transformations game demo
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Homogeneous Coordinates

§ Add a fourth homogeneous coordinate (w=1)

§ 4x4 matrices very common in graphics, hardware

§ Last row always 0 0 0 1 (until next lecture)
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Representation of Points (4-Vectors)

Homogeneous coordinates

§ Divide by 4th coord (w) to get                                
(inhomogeneous) point

§ Multiplication by w > 0, no effect

§ Assume w ≥ 0.  For w > 0, normal                                                                  
finite point.  For w = 0, point at infinity                                      
(used for vectors to stop translation)
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Advantages of Homogeneous Coords

§ Unified framework for translation, viewing, rot…

§ Can concatenate any set of transforms to 4x4 matrix

§ No division (as for perspective viewing) till end

§ Simpler formulas, no special cases

§ Standard in graphics software, hardware
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General Translation Matrix
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Combining Translations, Rotations

§ Order matters!!  TR is not the same as RT (demo)

§ General form for rigid body transforms

§ We show rotation first, then translation (commonly 
used to position objects) on next slide.  Slide after 
that works it out the other way 

§ Demos with applet, homework 1

                                
9

Combining Translations, Rotations

  P ' = (TR)P = MP = RP +T
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Combining Translations, Rotations

  P ' = (RT )P = MP = R(P +T ) = RP +RT
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Affine Transforms Video

§ https://www.youtube.com/watch?v=AheaTd_l5Is
&list=PLWfDJ5nla8UpwShx-
lzLJqcp575fKpsSO&index=3

§ Steve Seitz (at UW) 5 minute videos
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Outline

§ Translation: Homogeneous Coordinates

§ Combining Transforms: Scene Graphs

§ Transforming Normals

§ Rotations revisited: coordinate frames

§ gluLookAt (quickly)

Slides for this part courtesy Prof. O’Brien
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Hierarchical Scene Graph
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Drawing a Scene Graph

§ Draw scene with pre-and-post-order traversal
§ Apply node, draw children, undo node if applicable 

§ Nodes can carry out any function
§ Geometry, transforms, groups, color, …

§ Requires stack to “undo” post children
§ Transform stacks in OpenGL

§ Caching and instancing possible

§ Instances make it a DAG, not strictly a tree
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Example Scene-Graphs
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Outline

§ Translation: Homogeneous Coordinates

§ Combining Transforms: Scene Graphs

§ Transforming Normals

§ Rotations revisited: coordinate frames

§ gluLookAt (quickly)
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Normals
§ Important for many tasks in graphics like lighting

§ Do not transform like points e.g. shear

§ Algebra tricks to derive correct transform Incorrect to 
transform 
like points
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Finding Normal Transformation

  t → Mt n→Qn Q = ?

  n
Tt = 0

  n
TQTMt = 0 ⇒ QTM = I

  Q = (M −1)T
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Outline

§ Translation: Homogeneous Coordinates

§ Combining Transforms: Scene Graphs

§ Transforming Normals

§ Rotations revisited: coordinate frames

§ gluLookAt (quickly)
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Coordinate Frames
§ All of discussion in terms of operating on points

§ But can also change coordinate system 

§ Example, motion means either point moves 
backward, or coordinate system moves forward

  P = (2,1)   P
' = (1,1)   P = (1,1)
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Coordinate Frames: In general
§ Can differ both origin and orientation (e.g. 2 people)

§ One good example: World, camera coord frames (H1)
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Coordinate Frames: Rotations
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Outline

§ Translation: Homogeneous Coordinates

§ Combining Transforms: Scene Graphs

§ Transforming Normals

§ Rotations revisited: coordinate frames

§ gluLookAt (quickly)
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Geometric Interpretation 3D Rotations

§ Rows of matrix are 3 unit vectors of new coord frame
§ Can construct rotation matrix from 3 orthonormal vectors
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Axis-Angle formula (summary)

  (b \ a)ROT = (I3×3 cosθ − aaT cosθ)b + (A* sinθ)b

  (b→ a)ROT = (aaT )b

  R(a,θ) = I3×3 cosθ + aaT (1− cosθ)+ A* sinθ
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Outline

§ Translation: Homogeneous Coordinates

§ Combining Transforms: Scene Graphs

§ Transforming Normals

§ Rotations revisited: coordinate frames

§ gluLookAt (quickly)
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Case Study: Derive gluLookAt

Defines camera, fundamental to how we view images
§ gluLookAt(eyex, eyey, eyez, centerx, centery, centerz, upx, upy, upz)

§ Camera is at eye, looking at center, with the up direction being up

§ May be important for HW1

§ Combines many concepts discussed in lecture

§ Core function in OpenGL for later assignments

Eye

Up vector

Center
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Steps

§ gluLookAt(eyex, eyey, eyez, centerx, centery, centerz, upx, upy, upz)

§ Camera is at eye, looking at center, with the up direction being up

§ First, create a coordinate frame for the camera

§ Define a rotation matrix

§ Apply appropriate translation for camera (eye) location
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Constructing a coordinate frame?

We want to associate w with a, and v with b
§ But a and b are neither orthogonal nor unit norm
§ And we also need to find u

 
u = b ×w

b ×w

 v = w × u

from lecture 2

 
w = a

a
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Constructing a coordinate frame

   

§ We want to position camera at origin, looking down –Z dirn

§ Hence, vector a is given by eye – center
§ The vector b is simply the up vector

 
u = b ×w

b ×w  v = w × u

Eye

Up vector

Center

 
w = a

a
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Steps

§ gluLookAt(eyex, eyey, eyez, centerx, centery, centerz, upx, upy, upz)

§ Camera is at eye, looking at center, with the up direction being up

§ First, create a coordinate frame for the camera

§ Define a rotation matrix

§ Apply appropriate translation for camera (eye) location
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Geometric Interpretation 3D Rotations

§ Rows of matrix are 3 unit vectors of new coord frame
§ Can construct rotation matrix from 3 orthonormal vectors
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Steps

§ gluLookAt(eyex, eyey, eyez, centerx, centery, centerz, upx, upy, upz)

§ Camera is at eye, looking at center, with the up direction being up

§ First, create a coordinate frame for the camera

§ Define a rotation matrix

§ Apply appropriate translation for camera (eye) location
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Translation

§ gluLookAt(eyex, eyey, eyez, centerx, centery, centerz, upx, upy, upz)

§ Camera is at eye, looking at center, with the up direction being up

§ Cannot apply translation after rotation

§ The translation must come first (to bring camera to 
origin) before the rotation is applied
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Combining Translations, Rotations

  P ' = (RT )P = MP = R(P +T ) = RP +RT
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gluLookAt final form
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