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Computer Graphics

CSE 167 [Win 24], Lectures 16, 17: 

Nuts and bolts of Ray Tracing

Ravi Ramamoorthi
http://viscomp.ucsd.edu/classes/cse167/wi24
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Heckbert’’s Business Card Ray Tracer
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To Do

§ START EARLY on HW 4

§ Milestone is due on Mar 8
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Outline

§ Camera Ray Casting (choose ray directions)

§ Ray-object intersections 

§ Ray-tracing transformed objects 

§ Lighting calculations

§ Recursive ray tracing
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Outline in Code
Image Raytrace (Camera cam, Scene scene, int width, int height)
{
 Image image = new Image (width, height) ;
 for (int i = 0 ; i < height ; i++) 
  for (int j = 0 ; j < width ; j++) {
   Ray ray = RayThruPixel (cam, i, j) ;
   Intersection hit = Intersect (ray, scene) ;
   image[i][j] = FindColor (hit) ;
   }
 return image ;
}
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Ray Casting

Virtual Viewpoint

Virtual Screen Objects

Ray misses all objects: Pixel colored blackRay intersects object: shade using color, lights, materialsMultiple intersections: Use closest one (as does OpenGL)
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Finding Ray Direction

§ Goal is to find ray direction for given pixel i and j

§ Many ways to approach problem
§ Objects in world coord, find dirn of each ray (we do this)
§ Camera in canonical frame, transform objects (OpenGL)

§ Basic idea
§ Ray has origin (camera center) and direction 
§ Find direction given camera params and i and j

§ Camera params as in gluLookAt
§ Lookfrom[3], LookAt[3], up[3], fov
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Similar to gluLookAt derivation
§ gluLookAt(eyex, eyey, eyez, centerx, centery, centerz, upx, 

upy, upz)
§ Camera at eye, looking at center, with up direction being up

Eye

Up vector

Center

From earlier lecture on deriving gluLookAt
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Constructing a coordinate frame?

We want to associate w with a, and v with b
§ But a and b are neither orthogonal nor unit norm
§ And we also need to find u

 
u = b ×w

b ×w

 v = w × u

 
w = a

a

From basic math lecture - Vectors: Orthonormal Basis Frames
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Camera coordinate frame

 

§ We want to position camera at origin, looking down –Z dirn

§ Hence, vector a is given by eye – center
§ The vector b is simply the up vector

 
u = b ×w

b ×w  v = w × u

Eye

Up vector

Center

 
w = a

a
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Canonical viewing geometry
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ray = eye + t αu + βv −w

αu + βv −w
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Outline

§ Camera Ray Casting (choosing ray directions) 

§ Ray-object intersections 

§ Ray-tracing transformed objects 

§ Lighting calculations 

§ Recursive ray tracing
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Outline in Code
Image Raytrace (Camera cam, Scene scene, int width, int height)
{
 Image image = new Image (width, height) ;
 for (int i = 0 ; i < height ; i++) 
  for (int j = 0 ; j < width ; j++) {
   Ray ray = RayThruPixel (cam, i, j) ;
   Intersection hit = Intersect (ray, scene) ;
   image[i][j] = FindColor (hit) ;
   }
 return image ;
}
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Ray-Sphere Intersection

   

ray ≡

P =


P0 +


P1t

sphere ≡ (

P −

C) i (


P −

C)− r 2 = 0

C

P0
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Ray-Sphere Intersection

   

ray ≡

P =


P0 +


P1t

sphere ≡ (

P −

C) i (


P −

C)− r 2 = 0

Substitute

   

ray ≡

P =


P0 +


P1t

sphere ≡ (

P0 +


P1t −


C) i (


P0 +


P1t −


C)− r 2 = 0

Simplify

   t
2(

P1 i

P1)+ 2t


P1 i (


P0 −


C)+ (


P0 −


C) i (


P0 −


C)− r 2 = 0
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Ray-Sphere Intersection

   t
2(

P1 i

P1)+ 2t


P1 i (


P0 −


C)+ (


P0 −


C) i (


P0 −


C)− r 2 = 0

Solve quadratic equations for t

§ 2 real positive roots: pick smaller root

§ Both roots same: tangent to sphere

§ One positive, one negative root: ray                                    
origin inside sphere (pick + root)

§ Complex roots: no intersection (check                               
discriminant of equation first)
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Ray-Sphere Intersection

§ Intersection point:  

§ Normal (for sphere, this is same as coordinates 
in sphere frame of reference, useful other tasks) 

   ray ≡

P =


P0 +


P1t

  

normal =

P −

C


P −

C
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Ray-Triangle Intersection

§ One approach: Ray-Plane intersection, then 
check if inside triangle

§ Plane equation:  
A

B

C

  
n = (C − A)× (B − A)

(C − A)× (B − A)

   plane ≡

P i

n −

A i

n = 0
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Ray-Triangle Intersection

§ One approach: Ray-Plane intersection, then 
check if inside triangle

§ Plane equation:  

§ Combine with ray equation: 

A
B

C

  
n = (C − A)× (B − A)

(C − A)× (B − A)

   plane ≡

P i

n −

A i

n = 0

   

ray ≡

P =


P0 +


P1t

(

P0 +


P1t) i


n =

A i

n    

t =

A i

n −

P0 i

n

P1 i

n
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Ray inside Triangle
§ Once intersect with plane, still need to find if in 

triangle

§ Many possibilities for triangles, general polygons 
(point in polygon tests)

§ We find parametrically [barycentric coordinates].  Also 
useful for other applications (texture mapping)

A
B

C

P
α β

γ   

P = αA+ βB + γC
α ≥ 0,β ≥ 0,γ ≥ 0
α + β + γ = 1
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Ray inside Triangle

A
B

C

P
α β

γ

  

P = αA+ βB + γC
α ≥ 0,β ≥ 0,γ ≥ 0
α + β + γ = 1

  P − A = β(B − A)+ γ (C − A)

 

0 ≤ β ≤1 , 0 ≤ γ ≤1
β + γ ≤1
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Other primitives

§ Much early work in ray tracing focused on ray-
primitive intersection tests

§ Cones, cylinders, ellipsoids

§ Boxes (especially useful for bounding boxes)

§ General planar polygons

§ Many more

§ Consult chapter in Glassner (handed out) for 
more details and possible extra credit
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Ray Scene Intersection
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Outline

§ Camera Ray Casting (choosing ray directions) 

§ Ray-object intersections 

§ Ray-tracing transformed objects 

§ Lighting calculations 

§ Recursive ray tracing 
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Transformed Objects

§ E.g. transform sphere into ellipsoid

§ Could develop routine to trace ellipsoid 
(compute parameters after transformation)

§ May be useful for triangles, since triangle after 
transformation is still a triangle in any case

§ But can also use original optimized routines
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Ray-Tracing Transformed Objects

We have an optimized ray-sphere test
§ But we want to ray trace an ellipsoid…

Solution: Ellipsoid transforms sphere
§ Apply inverse transform to ray, use ray-sphere
§ Allows for instancing (traffic jam of cars)
§ Same idea for other primitives 
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Transformed Objects

§ Consider a general 4x4 transform M
§ Will need to implement matrix stacks like in OpenGL

§ Apply inverse transform M-1 to ray
§ Locations stored and transform in homogeneous 

coordinates
§ Vectors (ray directions) have homogeneous coordinate 

set to 0 [so there is no action because of translations]

§ Do standard ray-surface intersection as modified
§ Transform intersection back to actual coordinates

§ Intersection point p transforms as Mp
§ Distance to intersection if used may need recalculation 
§ Normals n transform as M-tn.  Do all this before lighting
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Outline

§ Camera Ray Casting (choosing ray directions) 

§ Ray-object intersections 

§ Ray-tracing transformed objects 

§ Lighting calculations 

§ Recursive ray tracing 
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Outline in Code
Image Raytrace (Camera cam, Scene scene, int width, int height)
{
 Image image = new Image (width, height) ;
 for (int i = 0 ; i < height ; i++) 
  for (int j = 0 ; j < width ; j++) {
   Ray ray = RayThruPixel (cam, i, j) ;
   Intersection hit = Intersect (ray, scene) ;
   image[i][j] = FindColor (hit) ;
   }
 return image ;
}
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Shadows

Virtual Viewpoint

Virtual Screen Objects

Light Source

Shadow ray to light is unblocked: object visibleShadow ray to light is blocked: object in shadow
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Shadows: Numerical Issues
•  Numerical inaccuracy may cause intersection to be 
    below surface  (effect exaggerated in figure)

•  Causing surface to incorrectly shadow itself
•  Move a little towards light before shooting shadow ray
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Lighting Model

§ Similar to OpenGL 

§ Lighting model parameters (global)
§ Ambient r g b 
§ Attenuation const linear quadratic

§ Per light model parameters
§ Directional light (direction, RGB parameters)
§ Point light (location, RGB parameters)
§ Some differences from HW 2 syntax

  
L =

L0

const + lin* d + quad * d 2

32

Material Model

§ Diffuse reflectance (r g b)

§ Specular reflectance (r g b)

§ Shininess s 

§ Emission (r g b)

§ All as in OpenGL
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Shading Model

§ Global ambient term, emission from material

§ For each light, diffuse specular terms

§ Note visibility/shadowing for each light (not in OpenGL)

§ Evaluated per pixel per light (not per vertex)

   
I = Ka +Ke + Vi

i=1

n

∑ Li (Kd max (li i n,0)+Ks(max(hi i n,0))s )

34

Outline

§ Camera Ray Casting (choosing ray directions) 

§ Ray-object intersections 

§ Ray-tracing transformed objects 

§ Lighting calculations 

§ Recursive ray tracing 
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Mirror Reflections/Refractions

Virtual Viewpoint

Virtual Screen Objects
Generate reflected ray in mirror direction, 
Get reflections and refractions of objects

36
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Turner Whitted 1980
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Basic idea

For each pixel
§ Trace Primary Eye Ray, find intersection

§ Trace Secondary Shadow Ray(s) to all light(s)
§ Color  = Visible ? Illumination Model : 0 ;

§ Trace Reflected Ray
§ Color += reflectivity * Color of reflected ray
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Recursive Shading Model

§ Highlighted terms are recursive specularities [mirror 
reflections] and transmission (latter is extra credit)

§ Trace secondary rays for mirror reflections and 
refractions, include contribution in lighting model

§ GetColor calls RayTrace recursively (the I values in 
equation above of secondary rays are obtained by 
recursive calls)

   
I = Ka +Ke + Vi

i=1

n

∑ Li (Kd max (li i n,0)+Ks(max(hi i n,0))s )+KsIR +KTIT
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Problems with Recursion

§ Reflection rays may be traced forever

§ Generally, set maximum recursion depth

§ Same for transmitted rays (take refraction into account)
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Effects needed for Realism
• (Soft) Shadows
• Reflections (Mirrors and Glossy)
• Transparency (Water, Glass)
• Interreflections (Color Bleeding)
• Complex Illumination (Natural, Area Light)
• Realistic Materials (Velvet, Paints, Glass)

Discussed in this lecture so far
Not discussed but possible with distribution ray tracing
Hard (but not impossible) with ray tracing; radiosity methods
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Some basic add ons

§ Area light sources and soft shadows: break into 
grid of n x n point lights
§ Use jittering: Randomize direction of shadow ray 

within small box for given light source direction
§ Jittering also useful for antialiasing shadows when 

shooting primary rays 

§ More complex reflectance models
§ Simply update shading model
§ But at present, we can handle only mirror global 

illumination calculations
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Acceleration

Testing each object for each ray is slow
§ Fewer Rays

Adaptive sampling, depth control
§ Generalized Rays

Beam tracing, cone tracing, pencil tracing etc.
§ Faster Intersections

§ Optimized Ray-Object Intersections
§ Fewer Intersections
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Acceleration Structures

Bounding boxes (possibly hierarchical)
 If no intersection bounding box, needn’t check objects

Bounding Box

Ray

Spatial Hierarchies (Oct-trees, kd trees, BSP trees)
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Bounding Volume Hierarchies 1
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Bounding Volume Hierarchies 2
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Bounding Volume Hierarchies 3
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Acceleration Structures: Grids

48
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Uniform Grid: Problems
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Octree

50

Octree traversal
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Other Accelerations

52

Course Evaluations

§ Fill out now, can be done on phone

§ Enthusiasm important to future offerings 

§ Comments useful to future years

§ Some key innovations: modern OpenGL, GLSL; 
feedback servers (including code), UCSD online, …

§ Separately, please also evaluate the TAs
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Ray Tracing Acceleration Structures

§ Bounding Volume Hierarchies (BVH)

§ Uniform Spatial Subdivision (Grids)

§ Binary Space Partitioning (BSP Trees)
§ Axis-aligned often for ray tracing: kd-trees

§ Conceptually simple, implementation a bit tricky
§ Lecture relatively high level: Start early, go to section
§ Remember that acceleration a small part of grade
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Math of 2D Bounding Box Test

§ Can you find a t in range

  txmax

  txmin

  
ty min

  
ty max

  

t > 0
txmin ≤ t ≤ txmax

ty min ≤ t ≤ ty max

No intersection if x and y ranges don’t overlap

  txmin   txmax   
ty min   

ty max

  

if txmin > ty max ORty min > txmax

returnfalse;
else

returntrue;

55

Bounding Box Test

§ Ray-Intersection is simple coordinate check 

§ Intricacies with test, see book 

§ Hierarchical Bounding Boxes 

Ray
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Hierarchical Bounding Box Test

§ If ray hits root box
§ Intersect left subtree
§ Intersect right subtree
§ Merge intersections (find closest one)

§ Standard hierarchical traversal 
§ But caveat, since bounding boxes may overlap

§ At leaf nodes, must intersect objects
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Creating Bounding Volume Hierarchy

function bvh-node::create (object array A, int AXIS)
N = A.length() ; 
if (N == 1) {left = A[0]; right = NULL; bbox = bound(A[0]);}
else if (N == 2) {

left = A[0] ; right = A[1] ;
bbox = combine(bound(A[0]),bound(A[1])) ;

else
Find midpoint m of bounding box of A along AXIS
Partition A into lists of size k and N-k around m
left = new bvh-node (A[0…k],(AXIS+1) mod 3) ; 
right = new bvh-node(A[k+1…N-1],(AXIS+1) mod 3);
bbox = combine (left -> bbox, right -> bbox) ;  

From page 305 of book
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Uniform Spatial Subdivision

§ Different idea: Divide space rather than objects

§ In BVH, each object is in one of two sibling nodes
§ A point in space may be inside both nodes

§ In spatial subdivision, each space point in one node
§ But object may lie in multiple spatial nodes

§ Simplest is uniform grid (have seen this already)

§ Challenge is keeping all objects within cell

§ And in traversing the grid
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Traversal of Grid High Level

§ Next Intersect Pt?

§ Irreg. samp. pattern?

§ But regular in planes

§ Fast algo. possible

§ (more on board)
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BSP Trees

§ Used for visibility and ray tracing
§ Book considers only axis-aligned splits for ray tracing
§ Sometimes called kd-tree for axis aligned

§ Split space (binary space partition) along planes

§ Fast queries and back-to-front (painter’s) traversal

§ Construction is conceptually simple
§ Select a plane as root of the sub-tree
§ Split into two children along this root
§ Random polygon for splitting plane (may need to split 

polygons that intersect it)

BSP slides courtesy Prof. O’Brien
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Initial State
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First Split
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Second Split
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Third Split

65

Fourth Split

66
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Final BSP Tree
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BSP Trees Cont’’d

§ Continue splitting until leaf nodes 

§ Visibility traversal in order
§ Child one 
§ Root
§ Child two 

§ Child one chosen based on viewpoint
§ Same side of sub-tree as viewpoint

§ BSP tree built once, used for all viewpoints
§ More details in book

§ 168 lectures (UCSD online) more detail re acceln
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Interactive Raytracing

§ Ray tracing historically slow

§ Now viable alternative for complex scenes 
§ Key is sublinear complexity with acceleration; 

need not process all triangles in scene

§ Allows many effects hard in hardware
§ Today graphics hardware and software (NVIDIA 

Optix 5, RTX chips claim 10G rays per second).
§ Tiger Demo: Video
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Raytracing on Graphics Hardware

§ Modern Programmable Hardware general 
streaming architecture

§ Can map various elements of ray tracing

§ Kernels like eye rays, intersect etc. 

§ In vertex or fragment programs

§ Convergence between hardware, ray tracing

[Purcell et al. 2002, 2003]

http://graphics.stanford.edu/papers/photongfx

70

71

RayTracing 5 Minute Videos

§ RT 1: 
https://www.youtube.com/watch?v=H5TB2l7zq6s&list=PLWfDJ5nla8Up
wShx-lzLJqcp575fKpsSO&index=13

§ RT 2: https://www.youtube.com/watch?v=mTOllvinv-
U&list=PLWfDJ5nla8UpwShx-lzLJqcp575fKpsSO&index=14

§ RT 3: 
https://www.youtube.com/watch?v=tUh6gCx08LI&list=PLWfDJ5nla8Up
wShx-lzLJqcp575fKpsSO&index=15
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