Computer Graphics

CSE 167 [Win 23], Lecture 7: OpenGL Shading

Ravi Ramamoorthi

http://viscomp.ucsd.edu/classes/cse167/wi23

Methodology for Lecture

Lecture deals with lighting (DEMO for HW 2)

Briefly explain shaders used for mytest3
Do this before explaining code fully so you can start HW 2
Primarily explain with reference to source code

More formal look at lighting and shading possible
Will be discussed in more detail if you take CSE 168

Importance of Lighting

Important to bring out 3D appearance (compare
teapot now to in previous demo)

Important for correct shading under lights

The way shading is done also important
Flat: Entire face has single color (normal) from one vertex
Gouraud or smooth: Colors at each vertex, interpolate

glShadeModel(GL_FLAT) [old] glShadeModel(GL_SMOOTH) [old!

To Do

This week’s lectures have all info for HW 2
Start EARLY (milestone due Monday Feb 6)

Demo for mytest3

Lighting on teapot
Blue, red highlights
Diffuse shading
Texture on floor

Update as we move

Brief primer on Color

Red, Green, Blue primary colors
Can be thought of as vertices of a color cube
R+G = Yellow, B+G = Cyan, B+R = Magenta,
R+G+B = White
Each color channel (R,G,B) treated separately

RGBA 32 bit mode (8 bits per channel) often used
A is for alpha for transparency if you need it

Colors normalized to 0 to 1 range in OpenGL
Often represented as 0 to 255 in terms of pixel intensities

Also, color index mode (not so important)

Outline

Gouraud and Phong shading (vertex vs fragment)

Types of lighting, materials and shading
Lights: Point and Directional
Shading: Ambient, Diffuse, Emissive, Specular

Fragment shader for mytest3
HW 2 requires a more general version of this

Source code in display routine

Gouraud Shading — Details

| Y =Y) b= y)

El

Y=Y,
_hy =y)+ =)

Actual implementation efficient: difference
equations while scan converting

Phong lllumination Model

Specular or glossy materials: highlights
Polished floors, glossy paint, whiteboards
For plastics highlight is color of light source (not object)
For metals, highlight depends on surface color

Really, (blurred) reflections of light source

Shk+hk:1

Roughness

Vertex vs Fragment Shaders

Can use vertex or fragment shaders for lighting

Vertex computations interpolated by rasterizing
Gouraud (smooth) shading, as in mytest1
Flat shading: no interpolation (single color of polygon)

Either compute colors at vertices, interpolate
This is standard in old-style OpenGL
Can be implemented with vertex shaders

Or interpolate normals etc. at vertices

And then shade at each pixel in fragment shader
Phong shading (different from Phong illumination)
More accurate

Wireframe: glPolygonMode (GL_FRONT, GL_LINE)
Also, polygon offsets to superimpose wireframe
Hidden line elimination? (polygons in black...)

Gouraud and Errors

I1 = 0 because (N dot E) is negative.
I> = 0 because (N dot L) is negative.

Any interpolation of 1 and I> will be 0.

area df
desired
highlight

2 Phongs make a Highlight

Besides the Phong lllumination or Reflectance model, there
is a Phong Shading model.

Phong Shading: Instead of interpolating the intensities
between vertices, interpolate the normals.

The entire lighting calculation is performed for each pixel,

based on the interpolated normal. (Old OpenGL doesn’ t do
this, but you can and will with current fragment shaders)

Examples and Color Plates

See OpenGL color plates (earlier eds) and glsl book

http://blog.cryos.net/categories/15-Avogadro/P3.html
http://blenderartists.org/forum/showthread.php?11430-Games-amp-Tutorials-(updated-Jan-5-2011)

Simple Vertex Shader in mytest3

void main() {
gl _Position = projection * modelview * vecd (position, 1.0f);
mynormal = mat3 (transpose (inverse (modelview))) * normal ;
myvertex = modelview * vec4 (position, 1.0f) ;

texcoord = vec2 (0.0, 0.0); // Default value just to prevent
errors

if (istex !'= 0){
texcoord = texCoords;

}

Lighting and Shading

Rest of this lecture considers lighting
In real world, complex lighting, materials interact
We study this more formally in CSE 168

For now some basic approximations to capture
key effects in lighting and shading

Inspired by old OpenGL fixed function pipeline
But remember that” s not physically based

Simple Vertex Shader in mytest3

#version 330 core // Do not use any version older than 330!

// Inputs
layout (location = 0) in vec3 position;
layout (location = 1) in vec3 normal;

layout (location = 2) in vec2 texCoords;

// Extra outputs, if any
out vecd4 myvertex;
out vec3 mynormal;

out vec2 texcoord;
// Uniform variables
uniform mat4 projection;

uniform mat4 modelview;

uniform int istex ;

Outline

Gouraud and Phong shading (vertex vs fragment)

Types of lighting, materials and shading
Lights: Point and Directional
Shading: Ambient, Diffuse, Emissive, Specular

Fragment shader for mytest3
HW 2 requires a more general version of this

Source code in display routine

Types of Light Sources

Point
Position, Color 1
i i atten=——
Attenuation (quadratic model) Ktk ik, e

Attenuation
Usually assume no attenuation (not physically correct)
Quadratic inverse square falloff for point sources
Linear falloff for line sources (tube lights). Why?
No falloff for distant (directional) sources. Why?

Directional (w=0, infinite far away, no attenuation)

Spotlights (not considered in homework)
Spot exponent
Spot cutoff

Material Properties

Need normals (to calculate how much diffuse,

specular, find reflected direction and so on)
Usually specify at each vertex, interpolate
GLUT used to do it automatically for teapots etc
(we provide meshes with normals instead for you in hw 2)
Can do manually for parametric surfaces
Average face normals for more complex shapes

Four terms: Ambient, Diffuse, Specular, Emissive

Ambient Term

Hack to simulate multiple bounces, scattering of light

Assume light equally from all directions

A
Global constant N> =7
<10>
VQ

Never have £
black pixels

| = Ambient

Diffuse Term

Rough matte (technically Lambertian) surfaces
Light reflects equally in all directions
N I~NeL

1= intensity,,., * diffuse

15

* atten, *[max (L - N,0)]

material

Emissive Term

) > material

»CA>4 | = Emission
£ v, A

Only relevant for light sources when looking directly at them
» Gotcha: must create geometry to actually see light
» Emission does not in itself affect other lighting calculations

Diffuse Term

Rough matte (technically Lambertian) surfaces
Light reflects equally in all directions
I~NelL

Specular Term

Glossy objects, specular reflections

Light reflects close to mirror direction

Xt

Phong lllumination Model

Specular or glossy materials: highlights
Polished floors, glossy paint, whiteboards
For plastics highlight is color of light source (not object)
For metals, highlight depends on surface color

Really, (blurred) reflections of light source

E)SHOHHS

Roughness

Phong Formula

I~(R-E)

Demo in mytest3

What happ when we make surface less shiny?

Idea of Phong lllumination
Find a simple way to create highlights that are view-
dependent and happen at about the right place
Not physically based

Use dot product (cosine) of eye and reflection of
light direction about surface normal

Alternatively, dot product of half angle and normal
Has greater physical backing. We use this form

Raise cosine lobe to some power to control
sharpness or roughness

Alternative: Half-Angle (Blinn-Phong)
I ~(N«H)
N H

n
1= intensity,,,, * specular, ... *atten, *[max (N e H,0)]""""*

material
i=0

Diffuse and specular components for most materials

Outline

Gouraud and Phong shading (vertex vs fragment)

Types of lighting, materials and shading
Lights: Point and Directional
Shading: Ambient, Diffuse, Emissive, Specular

Fragment shader for mytest3
HW 2 requires a more general version of this

Source code in display routine

Fragment Shader Setup Fragment Shader Variables

#version 330 core // Do not use any version older than 330! // Assume light 0 is directional, light 1 is a point light.
// Actual light values are passed from the main OpenGL program.
// Inputs fragment shader are outputs of same name of vertex shader // ;[“}ixis could be fancier. My goal is to illustrate a simple
idea.

in vec4 myvertex;
q uniform vec3 lightOdirn
in vec3 mynormal;

in vec2 texcoord; uniform vecd4 lightOcolor ;

uniform vecd4 lightlposn ;

// output the frag color uniform vecd4 lightlcolor ;

out vecd4 fragColor;
// Now, set the material parameters. These could be bound to

. // a buffer. But for now, I'll just make them uniform.
uniform sampler2D tex ;
. . . // I use ambient, diffuse, specular, shininess.
uniform int istex ;
e S ACIAEE p) oo oo MeERe. // Bmbient is just additive and doesn't multiply the lights.
: uniform vec4 ambient ;
uniform vec3 color;
uniform vecd4 diffuse ;
uniform vecd4 specular ;

uniform float shininess ;

Fragment Shader Compute Lighting Fragment Shader Main Transforms

vec4 ComputeLight (const in vec3 direction, const in vecd void main (void)
lightcolor, const in vec3 normal, const in vec3 halfvec, const
in vec4 mydlffuse, const in vec4 myspecular, const in float {

myshininess) { if (istex > 0) fragColor = texture(tex, texcoord);
else if (islight == 0) fragColor = vecd (color, 1.0f) ;
float nDotL = dot(normal, rection) ; else {

vecd lambert = mydiffuse * lightcolor * max (nDotL, 0.0) // They eye is always at (0,0,0) looking down -z axis

// Also compute current fragment position, direction to eye

float nDotH = dot(normal, halfvec) ;

vecd4 phong = myspecular * lightcolor * pow (max(nDotH,)
0.0) , myshininess) ; vec3 mypos = myvertex.xyz / myvertex.w ; // Dehomogenize

const vec3 eyepos = vec3(0,0,0) ;

vec3 eyedirn = normalize (eyepos - mypos) ;
vecd retval = lambert + phong ;
return retval ; // Compute normal, needed for shading.

vec3 normal = normalize (mynormal) ;

Fragment Shader Main Routine Outline

W B U CETIEs Gouraud and Phong shading (vertex vs fragment)

vec3 direction0 = normalize (lightOdirn) ;

vec3 half0 = normalize (direction0 + eyedirn) ;

vecd col0 = ComputeLight(direction0, lightOcolor, normal, Types of llg,htlng’ mate,rlals and Shadlng
half0, diffuse, specular, shininess) ; Lights: Point and Directional
Shading: Ambient, Diffuse, Emissive, Specular
// Light 1, point
vec3 position = lightlposn.xyz / lightlposn.w ; Fragment shader for mytest3
R i e HW 2 requires a more general version of this

// no attenuation

vec3 halfl = normalize (directionl + eyedirn) ; . . .
I in display routin

vecd4 coll = Computelight(directionl, lightlcolor, normal, SOU Ce COde dsp ay OUt e

halfl, diffuse, specular, shininess) ;

fragColor = ambient + col0 + coll ;
}

Light Set Up (in display) Moving a Light Source

/* New for Demo 3; add lighting effects */

{ Lights transform like other geometry
const GLfloat one[] = {1,1,1,1}

const GLEloat medium[] = (0.5f, 0.5£, 0.5, 1}; Only modelview matrix (not projection). The only real

const GLfloat small[] = {0.2f, 0.2f, 0.2f, 1}; application where the distinction is important
const GLfloat high[] {100} ;

const GLfloat zero[] = {0.0, 0.0, 0.0, 1.0} ; Types of I|ght motlon
const GLfloat light specular[] {1, 0 0, 1};

s s P e AIE] O (U Ouby Ty £ Stationary: set the transforms to identity before specifying it
const GLfloat light direction[] {0.5, 0, 0, 0}; // Dir 1t

const GLfloat light positionl[] = {0, -0.5, 0, 1}; Moving light: Push Matrix, move light, Pop Matrix

GLfloat 1lightO0[4], lightl[4] ;

// set Light and Material properties for the teapot Moving light source with viewpoint (attached to camera).

// Lights are transformed by current modelview matrix. Can Slmply Set I|ght tO 0 0 O SO Origin Wrt eye COOI’dS (make

// The shader can't do this globally. So we do so manually. mOdelVieW matriX |dent|ty before doing th|s)

transformvec (light direction, 1light0) ;
transformvec (light positionl, lightl) ;

Modelview Light Transform Set up Lighting for Teapot

glUniform3fv(lightOdirn, 1, light0) ;
/* New helper transformation function to transform vector by glUniformdfv(lightOcolor, 1, light specular)

modelview */ glUniformdfv(lightlposn, 1, lightl) ;
void transformvec (const GLfloat input[4], GLfloat output[4])

glUniformdfv(lightlcolor, 1, light specularl) ;
// glUniformdfv(lightlcolor, 1, zero) ;

glm: :vecd inputvec(input[0], input[1l], input[2], input[3]);

glm: :vec4 outputvec = modelview * inputvec; glUniformdfv (ambient,1,small) ;

output[o] outputvec[o]; glUniformdfv (diffuse,l,medium) ;

output[1] outputvec[1] ; glUniform4fv (specular,1,one) ;

output[2] outputvec[2] ; glUniformlfv(shininess,1,high) ;

CHEEEEE] = CHEmEE(E // Enable and Disable everything around the teapot

// Generally, we would also need to define normals etc.

// But the teapot object file already defines these for us.
if (DEMO > 4)

glUniformli (islight,lighting) ; // lighting only teapot.

Shader Mappings in init

vertexshader = initshaders(GL_VERTEX_SHADER, "shaders/light.vert")
fragmentshader = initshaders (GL_FRAGMENT_SHADER, "shaders/light.frag")

shaderprogram = initprogram(vertexshader, fragmentshader) ;

// * NEW * Set up the shader parameter mappings properly for lighting.
islight = glGetUniformLocation (shaderprogram,”islight")

lightOdirn = glGetUniformLocation (shaderprogram,”light0dirn")
lightOcolor = glGetUniformLocation(shaderprogram,"lightOcolor") ;
lightlposn = glGetUniformLocation (shaderprogram,”lightlposn")
lightlcolor = glGetUniformLocation(shaderprogram,"lightlcolor") ;
ambient = glGetUniformLocation (shaderprogram,”ambient")

diffuse = glGetUniformLocation(shaderprogram,"diffuse

specular = glGetUniformLocation (shaderprogram, "specular

shininess = glGetUniformLocation(shaderprogram, shininess")

