
1

Computer Graphics

CSE 167 [Win 23], Lecture 6: OpenGL 1

Ravi Ramamoorthi
http://viscomp.ucsd.edu/classes/cse167/wi23

1

To Do

§ HW 2 (much) more difficult than HW 1
§ Will cover all needed material mostly Tue next week
§ START EARLY (this weekend itself)
§ Milestone (can do immediately) due on Feb 6

2

Demo: Surreal (now 20 years ago)

3 4

This Lecture

§ Introduction to OpenGL and simple demo code
§ mytest1.cpp ; you compiled mytest3.cpp for HW 0
§ Include skeleton code on all platforms for programs

§ I am going to show (maybe write) actual code
§ Online code helps you understand HW 2 better
§ ASK QUESTIONS if confused!!

§ Simple demo of mytest1 (and maybe hw2)

§ This lecture deals with very basic OpenGL setup.
Next 2 lectures will likely be more interesting

5

Outline

§ Basic idea about OpenGL

§ Basic setup and buffers

§ Matrix modes

§ Window system interaction and callbacks

§ Drawing basic OpenGL primitives

§ Initializing Shaders
Best source for OpenGL is the redbook. Of course, this is more a
reference manual than a textbook, and you are better off
implementing rather reading end to end.

6

2

Introduction to OpenGL

§ OpenGL is a graphics API
§ Portable software library (platform-independent)
§ Layer between programmer and graphics hardware
§ Uniform instruction set (hides different capabilities)

§ OpenGL can fit in many places
§ Between application and graphics system
§ Between higher level API and graphics system

§ Why do we need OpenGL or an API?
§ Encapsulates many basic functions of 2D/3D graphics
§ Think of it as high-level language (C++) for graphics
§ History: Introduced SGI in 92, maintained by Khronos
§ Precursor for DirectX, WebGL, Java3D etc.

7

Programmer’’s View

Application

Graphics PackageApplication

OpenGL Application Programming Interface

Hardware and software (graphics card)

Output Device Input Device Input Device

Slide inspired by Greg Humphreys

8

OpenGL Rendering Pipeline (simple)

Geometry
Primitive
Operations

Pixel
Operations

Scan
Conversion
(Rasterize)

Texture
Memory

Fragment
Operations

Fram
ebuffer

Vertices

Images

Traditional Approach: Fixed function pipeline (state machine)
New Development (2003-): Programmable pipeline

Programmable in
Modern GPUs
(Vertex Shader)

Programmable in
Modern GPUs
(Fragment
Shader)

9

GPUs and Programmability

§ Since 2003, can write vertex/pixel shaders

§ Older fixed function pipeline deprecated, not taught

§ Like writing C programs (see OpenGL book)

§ Performance >> CPU (even used for non-graphics)

§ Operate in parallel on all vertices or fragments

§ Are teaching CSE 167 with programmable shaders
§ And modern OpenGL (3.1+) and GLSL 330+!

10

Full OpenGL Pipeline

Vertex Data
(Program)

Vertex
Shader

Tessellation
Control
Shader

Tessellation
Evaluation
Shader

Geometry
Shader

Primitive Setup
Clipping
Rasterization

Fragment
Shader

Texture/Image Data
(Program)

Final Pixel Color
(Image)

User/program generates original vertices, textures
We cover programmable vertex and fragment shaders in course
OpenGL primitive setup, clipping, rasterization not programmable
Tessellation shaders take patches (splines) to output vertices
Geometry shaders process primitives, can add/remove geometry

11

Outline

§ Basic idea about OpenGL

§ Basic setup and buffers

§ Matrix modes

§ Window system interaction and callbacks

§ Drawing basic OpenGL primitives

§ Initializing Shaders

12

3

Buffers and Window Interactions

§ Buffers: Color (front, back, left, right), depth (z),
accumulation, stencil. When you draw, you write
to some buffer (most simply, front and depth)

§ Buffers also used for vertices etc. Buffer data
and buffer arrays (will see in creating objects)

§ No window system interactions (for portability)
§ But can use GLUT / FreeGLUT (or Motif, GLX, Tcl/Tk)
§ Callbacks to implement mouse, keyboard interaction

13

Basic Setup (can copy; slight OS diffs)
int main(int argc, char** argv)
{

glutInit(&argc, argv);
// Requests the type of buffers (Single, RGB).
// Think about what buffers you would need...
glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB);
// Need to add GLUT_3_2_CORE_PROFILE for Apple/Mac OS
glutInitWindowSize (500, 500);
glutInitWindowPosition (100, 100);
glutCreateWindow ("Simple Demo with Shaders");
// glewInit(); // GLEW related stuff for non-Apple systems
init (); // Always initialize first

// Now, we define callbacks and functions for various tasks.
glutDisplayFunc(display);
glutReshapeFunc(reshape) ;
glutKeyboardFunc(keyboard);
glutMouseFunc(mouse) ;
glutMotionFunc(mousedrag) ;
glutMainLoop(); // Start the main code
deleteBuffers(); //Termination. Delete buffers generated in init()
return 0; /* ANSI C requires main to return int. */

}

14

Outline

§ Basic idea about OpenGL

§ Basic setup and buffers

§ Matrix modes

§ Window system interaction and callbacks

§ Drawing basic OpenGL primitives

§ Initializing Shaders

15

§ Inspired by old OpenGL. Now, only best practice, not requirement
§ You could do your own thing, but this is still the best way to develop viewing

§ Viewing consists of two parts
§ Object positioning: model view transformation matrix
§ View projection: projection transformation matrix

§ Old OpenGL (no longer supported/taught in 167), two matrix stacks
§ GL_MODELVIEW_MATRIX, GL_PROJECTION_MATRIX
§ Could push and pop matrices onto stacks

§ New OpenGL: Use C++ STL templates to make stacks as needed
§ e.g. stack <mat4> modelview ; modelview.push(mat4(1.0)) ;
§ GLM libraries replace many deprecated commands. Include mat4

§ Convention: camera always at the origin, pointing in the –z direction

§ Transformations move objects relative to the camera

§ In old OpenGL, Matrices are column-major and right-multiply top of
stack. (Last transform in code is first actually applied). In new GLM,
similarly (read the assignment notes and documentation).

Viewing in OpenGL

16

Basic initialization code for viewing
#include <GL/glut.h> //also <GL/glew.h>; <GLUT/glut.h> for Mac OS
#include <stdlib.h> //also stdio.h, assert.h, glm, others

int mouseoldx, mouseoldy ; // For mouse motion
GLfloat eyeloc = 2.0 ; // Where to look from; initially 0 -2, 2
glm::mat4 projection, modelview; // The mvp matrices themselves

void init (void)
{
/* select clearing color */

glClearColor (0.0, 0.0, 0.0, 0.0);

/* initialize viewing values */
projection = glm::mat4(1.0f); // The identity matrix

// Think about this. Why is the up vector not normalized?
modelview = glm::loakAt(glm::vec3(0,-eyeloc,eyeloc),

glm::vec3(0,0,0), glm::vec3(0,1,1)) ;
// (To be cont’’d). Geometry and shader set up later ...

17

Outline

§ Basic idea about OpenGL

§ Basic setup and buffers

§ Matrix modes

§ Window system interaction and callbacks

§ Drawing basic OpenGL primitives

§ Initializing Shaders

18

4

Window System Interaction

§ Not part of OpenGL

§ Toolkits (GLUT) available (red book: freeglut)

§ Callback functions for events
§ Keyboard, Mouse, etc.
§ Open, initialize, resize window
§ Similar to other systems (X, Java, etc.)

§ Our main func included
glutDisplayFunc(display);
glutReshapeFunc(reshape) ;
glutKeyboardFunc(keyboard);
glutMouseFunc(mouse) ;
glutMotionFunc(mousedrag) ;

19

Basic window interaction code
/* Defines what to do when various keys are pressed */
void keyboard (unsigned char key, int x, int y)
{

switch (key) {
case 27: // Escape to quit

exit(0) ;
break ;

default:
break ;

}
}

/* Reshapes the window appropriately */
void reshape(int w, int h)
{

glViewport (0, 0, (GLsizei) w, (GLsizei) h);
// Note that the field of view takes in a radian angle
projection = glm::perspective(30.0f / 180.0f * glm::pi<float>(),

(GLfloat)w / (GLfloat)h, 1.0f, 10.0f);
glUniformMatrix4fv(projectionPos,1, GL_FALSE, &projection[0][0]);
// To send the projection matrix to the shader

}

20

Mouse motion (demo)
/* Defines a Mouse callback to zoom in and out */
/* This is done by modifying gluLookAt */
/* The actual motion is in mousedrag */
/* mouse simply sets state for mousedrag */
void mouse(int button, int state, int x, int y) {

if (button == GLUT_LEFT_BUTTON) {
if (state == GLUT_UP) {

// Do Nothing ;
}
else if (state == GLUT_DOWN) {

mouseoldx = x ; mouseoldy = y ; // so we can move wrt x , y
}

}
else if (button == GLUT_RIGHT_BUTTON && state == GLUT_DOWN)

{ // Reset gluLookAt
eyeloc = 2.0 ;
modelview = glm::lookAt(glm::vec3(0, -eyeloc, eyeloc),

glm::vec3(0, 0, 0), glm::vec3(0, 1, 1));
// Send the updated matrix to the shader

glUniformMatrix4fv(modelviewPos,1,GL_FALSE,&modelview[0][0]);
glutPostRedisplay() ; // Redraw scene

}
}

21

Mouse drag (demo)

void mousedrag(int x, int y) {
int yloc = y - mouseoldy ; // We will use the y coord to

zoom in/out
eyeloc += 0.005*yloc ; // Where do we look from
if (eyeloc < 0) eyeloc = 0.0 ;
mouseoldy = y ;

/* Set the eye location */
modelview = glm::lookAt(glm::vec3(0, -eyeloc, eyeloc),

glm::vec3(0, 0, 0), glm::vec3(0, 1, 1));
// Send the updated matrix over to the shader
glUniformMatrix4fv(modelviewPos,1,GL_FALSE,&modelview[0][0]);

glutPostRedisplay() ;
}

22

Outline

§ Basic idea about OpenGL

§ Basic setup and buffers

§ Matrix modes

§ Window system interaction and callbacks

§ Drawing basic OpenGL primitives

§ Initializing Shaders

23

New OpenGL Primitives (fewer)

Points Lines (also strips, loops) Polygon

Triangle Quad Quad Strip

Triangle Strip Triangle Fan

24

5

Geometry

§ Points (GL_POINTS)
Stored in Homogeneous coordinates

§ Line segments (GL_LINES)
§ Also (GL_LINE_STRIP, GL_LINE_LOOP)

§ Triangles (GL_TRIANGLES)
§ Also strips, fans (GL_TRIANGLE_STRIP, GL_TRIANGLE_FAN)

§ More complex primitives (GLUT): Sphere, teapot, cube,…
§ Must now be converted into triangles (which is what skeleton does)

25

Old OpenGL: Drawing
§ Enclose vertices between glBegin() … glEnd() pair

§ Can include normal C code and attributes like the colors
§ Inside are commands like glVertex3f, glColor3f
§ Attributes must be set before the vertex

§ Assembly line (pass vertices, transform, shade)
§ These are vertex, fragment shaders on current GPUs
§ Immediate Mode: Sent to server and drawn

§ Client-Server model (client generates vertices,
server draws) even if on same machine
§ glFlush() forces client to send network packet
§ glFinish() waits for ack, sparingly use synchronization

§ New OpenGL: Vertex Array Objects (next)

26

Old OpenGL: Drawing (not used)
void display(void)
{

glClear (GL_COLOR_BUFFER_BIT);

// draw polygon (square) of unit length centered at the origin
// This code draws each vertex in a different color.
// The hardware will blend between them.
// This is a useful debugging trick. I make sure each vertex
// appears exactly where I expect it to appear.

glBegin(GL_POLYGON);
glColor3f (1.0, 0.0, 0.0);
glVertex3f (0.5, 0.5, 0.0);
glColor3f (0.0, 1.0, 0.0);
glVertex3f (-0.5, 0.5, 0.0);
glColor3f (0.0, 0.0, 1.0);
glVertex3f (-0.5, -0.5, 0.0);
glColor3f (1.0, 1.0, 1.0);
glVertex3f (0.5, -0.5, 0.0);

glEnd();
glFlush () ;

}

(-.5, -.5)
BLUE

(.5, -.5)
WHITE

(.5, .5)
RED

(-.5, .5)
GREEN

27

Modern OpenGL: Floor Specification
const GLfloat floorverts[4][3] = {

{0.5, 0.5, 0.0}, {-0.5, 0.5, 0.0}, {-0.5, -0.5, 0.0}, {0.5, -
0.5, 0.0}

} ;

const GLfloat floorcol[4][3] = {

{1.0, 0.0, 0.0}, {0.0, 1.0, 0.0}, {0.0, 0.0, 1.0}, {1.0, 1.0,
1.0}

} ;

const GLubyte floorinds[1][6] = { {0, 1, 2, 0, 2, 3} } ; //tris

const GLfloat floorverts2[4][3] = {

{0.5, 0.5, 1.0}, {-0.5, 0.5, 1.0}, {-0.5, -0.5, 1.0}, {0.5, -
0.5, 1.0}

} ;

const GLfloat floorcol2[4][3] = {

{1.0, 0.0, 0.0}, {1.0, 0.0, 0.0}, {1.0, 0.0, 0.0}, {1.0, 0.0,
0.0}

} ; // all red and on top

const GLubyte floorinds2[1][6] = { {0, 1, 2, 0, 2, 3} } ; //tris

28

Modern OpenGL: Vertex Array Objects
const int numobjects = 2 ; // number of objects for buffer

const int numperobj = 3 ; // Vertices, colors, indices

GLuint VAOs[numobjects]; // A Vertex Array Object per object

GLuint buffers[numperobj*numobjects] ; // List of buffers geometric data
GLuint objects[numobjects]; // For each object

GLenum PrimType[numobjects];// Primitive Type (triangles, strips)

GLsizei NumElems[numobjects] ; // Number of geometric elements

// Floor Geometry is specified with a vertex array

enum {Vertices, Colors, Elements} ; // For arrays for object

enum {FLOOR, FLOOR2} ; // For objects, for the floor

//------In init below (creates buffer objects for later use)------

glGenVertexArrays(numobjects, VAOs); //create unique identifiers

glGenBuffers(numperobj*numobjects, buffers); //and for buffers

void deleteBuffers() { // Like a destructor

glDeleteVertexArrays(numobjects, VAOs);

glDeleteBuffers(numperobj*numobjects buffers);}

29

Modern OpenGL: Initialize Buffers
void initobject (GLuint object, GLfloat * vert, GLint sizevert, GLfloat *

col, GLint sizecol, GLubyte * inds, GLint sizeind, GLenum type) {

int offset = object * numperobj;

glBindVertexArray(VAOs[object]);

glBindBuffer(GL_ARRAY_BUFFER, buffers[Vertices+offset]) ;

glBufferData(GL_ARRAY_BUFFER, sizevert, vert,GL_STATIC_DRAW);

// Use layout location 0 for the vertices

glEnableVertexAttribArray(0);

glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 3 * sizeof(GLfloat), 0);

glBindBuffer(GL_ARRAY_BUFFER, buffers[Colors+offset]) ;

glBufferData(GL_ARRAY_BUFFER, sizecol, col,GL_STATIC_DRAW);

// Use layout location 1 for the colors

glEnableVertexAttribArray(1);

glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, 3 * sizeof(GLfloat), 0);

glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, buffers[Elements+offset]) ;

glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeind, inds,GL_STATIC_DRAW);

PrimType[object] = type;

NumElems[object] = sizeind;

// Prevent further modification of this VAO by unbinding it

glBindVertexArray(0);

30

6

Modern OpenGL: Draw Vertex Object
void drawobject(GLuint object) {

glBindVertexArray(VAOs[object]);

glDrawElements(PrimType[object], NumElems[object],
GL_UNSIGNED_BYTE, 0);

glBindVertexArray(0); //unbind

}

void display(void) {

glClear (GL_COLOR_BUFFER_BIT); // clear all pixels

drawobject(FLOOR) ;

drawobject(FLOOR2)

glFlush (); // start processing buffered OpenGL commands

}

31

Initialization for Drawing, Shading
#include "shaders.h"

GLuint vertexshader, fragmentshader, shaderprogram ; // shaders

// Initialization in init() for Drawing
glGenVertexArrays(numobjects, VAOs) ;

glGenBuffers(numperobj*numobjects, buffers) ;

initobject(FLOOR, (GLfloat *) floorverts, sizeof(floorverts), (GLfloat
*) floorcol, sizeof (floorcol), (GLubyte *) floorinds, sizeof
(floorinds), GL_TRIANGLES) ;

initobject(FLOOR2, (GLfloat *) floorverts2, sizeof(floorverts2),
(GLfloat *) floorcol2, sizeof (floorcol2), (GLubyte *) floorinds2,
sizeof (floorinds2), GL_TRIANGLES) ;

// In init() for Shaders, discussed next

vertexshader = initshaders(GL_VERTEX_SHADER, "shaders/nop.vert") ;

fragmentshader = initshaders(GL_FRAGMENT_SHADER, "shaders/nop.frag") ;

shaderprogram = initprogram(vertexshader, fragmentshader) ;

32

Demo (change colors)

33

Outline

§ Basic idea about OpenGL

§ Basic setup and buffers

§ Matrix modes

§ Window system interaction and callbacks

§ Drawing basic OpenGL primitives

§ Initializing Shaders

34

Full OpenGL Pipeline

Vertex Data
(Program)

Vertex
Shader

Tessellation
Control
Shader

Tessellation
Evaluation
Shader

Geometry
Shader

Primitive Setup
Clipping
Rasterization

Fragment
Shader

Texture/Image Data
(Program)

Final Pixel Color
(Image)

User/program generates original vertices, textures
We cover programmable vertex and fragment shaders in course
OpenGL primitive setup, clipping, rasterization not programmable
Tessellation shaders take patches (splines) to output vertices
Geometry shaders process primitives, can add/remove geometry

35

Simplified OpenGL Pipeline
§ User specifies vertices (via vertex arrays)
§ For each vertex in parallel

§ OpenGL calls user-specified vertex shader:
Transform vertex (ModelView, Projection), other ops

§ For each primitive, OpenGL rasterizes
§ Generates a fragment for each pixel the fragment covers

§ For each fragment in parallel
§ OpenGL calls user-specified fragment shader:

Shading and lighting calculations
§ OpenGL handles z-buffer depth test unless overwritten

§ Modern OpenGL is “lite” basically just a rasterizer
§ “Real” action in user-defined vertex, fragment shaders

36

7

Shader Setup

§ Initializing (shader itself discussed later)

1. Create shader (Vertex and Fragment)

2. Compile shader

3. Attach shader to program

4. Link program

5. Use program

§ Shader source is just sequence of strings

§ Similar steps to compile a normal program

37

Shader Initialization Code
GLuint initshaders (GLenum type, const char *filename) {

// Using GLSL shaders, OpenGL book, page 679 of 7th edition

GLuint shader = glCreateShader(type) ;

GLint compiled ;
string str = textFileRead (filename) ;

const GLchar * cstr = str.c_str() ;

glShaderSource (shader, 1, &cstr, NULL) ;

glCompileShader (shader) ;

glGetShaderiv (shader, GL_COMPILE_STATUS, &compiled) ;

if (!compiled) {

shadererrors (shader) ;

throw 3 ;

}

cout<<"Shader file " <<filename<<" successfully
compiled.”<<endl;

return shader ;

}

38

Linking Shader Program
GLuint initprogram (GLuint vertexshader, GLuint fragmentshader)

{

GLuint program = glCreateProgram() ;

GLint linked ;
glAttachShader(program, vertexshader) ;

glAttachShader(program, fragmentshader) ;

glLinkProgram(program) ;

glGetProgramiv(program, GL_LINK_STATUS, &linked) ;

if (linked) glUseProgram(program) ;

else {

programerrors(program) ;

throw 4 ;

}

cout<<"Shader program successfully attached and linked." <<
endl;

return program ;

}

39

Basic (nop) vertex shader
§ In shaders/ nop.vert.glsl nop.frag.glsl

§ Written in GLSL (GL Shading Language)
§ Vertex Shader (out values interpolated to fragment)

version 330 core

// Do not modify the above version directive to anything older.

// Shader inputs

layout (location = 0) in vec3 position;

layout (location = 1) in vec3 color;

// Shader outputs, if any

out vec3 Color;

// Uniform variables

uniform mat4 modelview;

uniform mat4 projection;

void main() {

gl_Position = projection * modelview * vec4(position, 1.0f);

Color = color; // Just forward this color to the fragment shader

}

40

Basic (nop) fragment shader
version 330 core

// Do not modify the version directive to anything older than 330.

// Fragment shader inputs are outputs of same name from vertex shader
in vec3 Color;

// Uniform variables (none)

// Output

out vec4 fragColor;

void main (void)

{

fragColor = vec4(Color, 1.0f);

}

41

