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Computer Graphics

CSE 167 [Win 23], Lecture 5: Viewing

Ravi Ramamoorthi
http://viscomp.ucsd.edu/classes/cse167/wi23
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To Do

§ Questions/concerns about assignment 1?

§ Remember it is due Friday! (Jan 27).  

§ Ask me or TAs re problems
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Motivation

§ We have seen transforms (between coord systems)

§ But all that is in 3D

§ We still need to make a 2D picture

§ Project 3D to 2D.  How do we do this?

§ This lecture is about viewing transformations
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Summary: The Whole Viewing Pipeline
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Slide courtesy Greg Humphreys
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Demo (Projection Tutorial)
§ Nate Robbins OpenGL                                                                      

tutors

§ Projection tutorial

§ Download others
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What we’’ve seen so far
§ Transforms (translation, rotation, scale) as 4x4 

homogeneous matrices

§ Last row always 0 0 0 1.  Last w component always 1

§ For viewing (perspective), we will use that last row 
and w component no longer 1 (must divide by it)
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Outline

§ Orthographic projection (simpler)

§ Perspective projection, basic idea 

§ Derivation of gluPerspective (handout: glFrustum)

§ Brief discussion of nonlinear mapping in z
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Projections

§ To lower dimensional space (here 3D -> 2D)

§ Preserve straight lines

§ Trivial example: Drop one coordinate (Orthographic)

8

Orthographic Projection

§ Characteristic: Parallel lines remain parallel

§ Useful for technical drawings etc.

Orthographic Perspective

9

Example

§ Simply project onto xy plane, drop z coordinate
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In general
§ We have a cuboid that we want to map to the 

normalized or square cube from [-1, +1] in all axes

§ We have parameters of cuboid (l,r ; t,b; n,f)
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Orthographic Matrix
§ First center cuboid by translating

§ Then scale into unit cube
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Transformation Matrix
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Caveats
§ Looking down –z, f and n are negative (n > f)

§ OpenGL convention: positive n, f, negate internally
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Final Result
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Outline

§ Orthographic projection (simpler)

§ Perspective projection, basic idea

§ Derivation of gluPerspective (handout: glFrustum)

§ Brief discussion of nonlinear mapping in z
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Perspective Projection

§ Most common computer graphics, art, visual system

§ Further objects are smaller (size, inverse distance)

§ Parallel lines not parallel; converge to single point
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Slides inspired by Greg Humphreys 
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Funny things happen…
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Perspective Video 1

§ https://www.youtube.com/watch?v=F5WA26W4J
aM&list=PLWfDJ5nla8UpwShx-
lzLJqcp575fKpsSO&index=11

§ Steve Seitz UW 5 minute videos

§ more detail regarding lenses and actual 
cameras than needed for course (good to know)

19

Overhead View of Our Screen

Looks like we’ve got some nice similar triangles here?
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In Matrices

§ Note negation of z coord (focal plane –d)

§ (Only) last row affected (no longer 0 0 0 1)

§ w coord will no longer = 1.  Must divide at end 
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Verify
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Perspective Video 2

§ https://www.youtube.com/watch?v=g7Pb8mrwcJ
0&list=PLWfDJ5nla8UpwShx-
lzLJqcp575fKpsSO&index=12

§ Steve Seitz UW 5 minute videos

§ more detail regarding lenses and actual 
cameras than needed for course (good to know)
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Outline

§ Orthographic projection (simpler)

§ Perspective projection, basic idea 

§ Derivation of gluPerspective (handout: glFrustum)

§ Brief discussion of nonlinear mapping in z
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Remember projection tutorial
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Viewing Frustum

Near plane

Far plane
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Screen (Projection Plane)

Field of view
(fovy)

width

height

Aspect ratio = width / height
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gluPerspective

§ gluPerspective(fovy, aspect, zNear > 0, zFar > 0)

§ Fovy, aspect control fov in x, y directions

§ zNear, zFar control viewing frustum
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Overhead View of Our Screen
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In Matrices

§ Simplest form: 

§ Aspect ratio taken into account

§ Homogeneous, simpler to multiply through by d

§ Must map z vals based on near, far planes (not yet)
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In Matrices

§ A and B selected to map n and f to -1, +1 respectively
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Z mapping derivation

§ Simultaneous equations?
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Outline

§ Orthographic projection (simpler)

§ Perspective projection, basic idea 

§ Derivation of gluPerspective (handout: glFrustum)

§ Brief discussion of nonlinear mapping in z
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Mapping of Z is nonlinear

§ Many mappings proposed: all have nonlinearities

§ Advantage: handles range of depths (10cm – 100m)

§ Disadvantage: depth resolution not uniform

§ More close to near plane, less further away

§ Common mistake: set near = 0, far = infty.  Don’t do 
this.  Can’t set near = 0; lose depth resolution.

§ We discuss this more in review session
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Summary: The Whole Viewing Pipeline
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Slide courtesy Greg Humphreys
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