
1

Computer Graphics

CSE 167 [Win 23], Lecture 5: Viewing

Ravi Ramamoorthi
http://viscomp.ucsd.edu/classes/cse167/wi23

1

To Do

§ Questions/concerns about assignment 1?

§ Remember it is due Friday! (Jan 27).

§ Ask me or TAs re problems

2

Motivation

§ We have seen transforms (between coord systems)

§ But all that is in 3D

§ We still need to make a 2D picture

§ Project 3D to 2D. How do we do this?

§ This lecture is about viewing transformations

3

Summary: The Whole Viewing Pipeline

Model
transformation

Camera
Transformation

(gluLookAt)

Perspective
Transformation
(gluPerspective)

Viewport
transformation

Raster
transformation

Model coordinates

World coordinates

Eye coordinates

Screen coordinates

Window coordinates

Device coordinates

Slide courtesy Greg Humphreys

4

Demo (Projection Tutorial)
§ Nate Robbins OpenGL

tutors

§ Projection tutorial

§ Download others

5

What we’’ve seen so far
§ Transforms (translation, rotation, scale) as 4x4

homogeneous matrices

§ Last row always 0 0 0 1. Last w component always 1

§ For viewing (perspective), we will use that last row
and w component no longer 1 (must divide by it)

6

2

Outline

§ Orthographic projection (simpler)

§ Perspective projection, basic idea

§ Derivation of gluPerspective (handout: glFrustum)

§ Brief discussion of nonlinear mapping in z

7

Projections

§ To lower dimensional space (here 3D -> 2D)

§ Preserve straight lines

§ Trivial example: Drop one coordinate (Orthographic)

8

Orthographic Projection

§ Characteristic: Parallel lines remain parallel

§ Useful for technical drawings etc.

Orthographic Perspective

9

Example

§ Simply project onto xy plane, drop z coordinate

10

In general
§ We have a cuboid that we want to map to the

normalized or square cube from [-1, +1] in all axes

§ We have parameters of cuboid (l,r ; t,b; n,f)

x

z

y

l r

t

b
n

f

x

z

Translate

y

x

z

y

Scale

11

Orthographic Matrix
§ First center cuboid by translating

§ Then scale into unit cube

x

z

y

l r

t

b
n

f

x

z

Translate

y

x

z

y

Scale

12

3

Transformation Matrix

M =

2
r − l

0 0 0

0 2
t − b

0 0

0 0 2
f − n

0

0 0 0 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

1 0 0 − l + r
2

0 1 0 − t + b
2

0 0 1 − f + n
2

0 0 0 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

Scale Translation (centering)

13

Caveats
§ Looking down –z, f and n are negative (n > f)

§ OpenGL convention: positive n, f, negate internally

x

z

y

l r

t

b
n

f

x

z

Translate

y

x

z

y

Scale

14

Final Result

M =

2
r − l

0 0 − r + l
r − l

0 2
t − b

0 − t + b
t − b

0 0 2
f − n

− f + n
f − n

0 0 0 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

glOrtho =

2
r − l

0 0 − r + l
r − l

0 2
t − b

0 − t + b
t − b

0 0 −2
f − n

− f + n
f − n

0 0 0 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

15

Outline

§ Orthographic projection (simpler)

§ Perspective projection, basic idea

§ Derivation of gluPerspective (handout: glFrustum)

§ Brief discussion of nonlinear mapping in z

16

Perspective Projection

§ Most common computer graphics, art, visual system

§ Further objects are smaller (size, inverse distance)

§ Parallel lines not parallel; converge to single point

B

A’

B’
Center of projection

(camera/eye location)

A
Plane of Projection

Slides inspired by Greg Humphreys

17

Funny things happen…

18

4

Perspective Video 1

§ https://www.youtube.com/watch?v=F5WA26W4J
aM&list=PLWfDJ5nla8UpwShx-
lzLJqcp575fKpsSO&index=11

§ Steve Seitz UW 5 minute videos

§ more detail regarding lenses and actual
cameras than needed for course (good to know)

19

Overhead View of Our Screen

Looks like we’ve got some nice similar triangles here?

x
z
= ′x

d
⇒ ′x = d ∗ x

z
y
z
= ′y

d
⇒ ′y = d * y

z

 ′x , ′y ,d()
x,y,z()

 d

0,0,0()

20

In Matrices

§ Note negation of z coord (focal plane –d)

§ (Only) last row affected (no longer 0 0 0 1)

§ w coord will no longer = 1. Must divide at end

P =

1 0 0 0
0 1 0 0
0 0 1 0

0 0 − 1
d

0

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

21

Verify

1 0 0 0
0 1 0 0
0 0 1 0

0 0 − 1
d

0

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

x
y
z
1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

= ?

x
y
z

− z
d

⎛

⎝

⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟⎟

=

− d * x
z

− d * y
z

−d
1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

22

Perspective Video 2

§ https://www.youtube.com/watch?v=g7Pb8mrwcJ
0&list=PLWfDJ5nla8UpwShx-
lzLJqcp575fKpsSO&index=12

§ Steve Seitz UW 5 minute videos

§ more detail regarding lenses and actual
cameras than needed for course (good to know)

23

Outline

§ Orthographic projection (simpler)

§ Perspective projection, basic idea

§ Derivation of gluPerspective (handout: glFrustum)

§ Brief discussion of nonlinear mapping in z

24

5

Remember projection tutorial

25

Viewing Frustum

Near plane

Far plane

26

Screen (Projection Plane)

Field of view
(fovy)

width

height

Aspect ratio = width / height

27

gluPerspective

§ gluPerspective(fovy, aspect, zNear > 0, zFar > 0)

§ Fovy, aspect control fov in x, y directions

§ zNear, zFar control viewing frustum

28

Overhead View of Our Screen

 θ = ? d = ?

 ′x , ′y ,d()
x,y,z()

 d

0,0,0()

θ = fovy

2
d = cotθ

29

In Matrices

§ Simplest form:

§ Aspect ratio taken into account

§ Homogeneous, simpler to multiply through by d

§ Must map z vals based on near, far planes (not yet)

P =

1
aspect

0 0 0

0 1 0 0
0 0 1 0

0 0 − 1
d

0

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

30

6

In Matrices

§ A and B selected to map n and f to -1, +1 respectively

P =

1
aspect

0 0 0

0 1 0 0
0 0 1 0

0 0 − 1
d

0

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

→

d
aspect

0 0 0

0 d 0 0
0 0 A B
0 0 −1 0

⎛

⎝

⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟⎟

31

Z mapping derivation

§ Simultaneous equations?

A B
−1 0

⎛

⎝⎜
⎞

⎠⎟
z
1

⎛

⎝⎜
⎞

⎠⎟
= ?

Az +B
−z

⎛

⎝⎜
⎞

⎠⎟
= −A− B

z

−A+ B
n
= −1

−A+ B
f
= +1

A = − f + n
f − n

B = − 2fn
f − n

32

Outline

§ Orthographic projection (simpler)

§ Perspective projection, basic idea

§ Derivation of gluPerspective (handout: glFrustum)

§ Brief discussion of nonlinear mapping in z

33

Mapping of Z is nonlinear

§ Many mappings proposed: all have nonlinearities

§ Advantage: handles range of depths (10cm – 100m)

§ Disadvantage: depth resolution not uniform

§ More close to near plane, less further away

§ Common mistake: set near = 0, far = infty. Don’t do
this. Can’t set near = 0; lose depth resolution.

§ We discuss this more in review session

Az +B
−z

⎛

⎝⎜
⎞

⎠⎟
= −A− B

z

34

Summary: The Whole Viewing Pipeline

Model
transformation

Camera
Transformation

(gluLookAt)

Perspective
Transformation
(gluPerspective)

Viewport
transformation

Raster
transformation

Model coordinates

World coordinates

Eye coordinates

Screen coordinates

Window coordinates

Device coordinates

Slide courtesy Greg Humphreys

35

