
1

Computer Graphics

CSE 167 [Win 23], Lecture 18: Texture Mapping

Ravi Ramamoorthi

http://viscomp.ucsd.edu/classes/cse167/wi23

Many slides from Greg Humphreys, formerly UVA and
Rosalee Wolfe, DePaul tutorial teaching texture mapping visually
Chapter 11 in text book covers some portions

1

To Do

§ Submit HW4 milestone by tomorrow

§ Prepare for final push on HW 4

§ Written assignment due Mar 15, 11:59pm
§ Individually, no collaboration, piazza posts
§ Open notes, online. But understand what you turn in,

and try to use your own words
§ No final

2

Texture Mapping

§ Important topic: nearly all objects textured
§ Wood grain, faces, bricks and so on
§ Adds visual detail to scenes

§ Meant as a fun and practically useful lecture

Polygonal model With surface texture

3

Adding Visual Detail

§ Basic idea: use images instead of more
polygons to represent fine scale color variation

4

Parameterization

geometry

+ =

image texture map

• Q: How do we decide where on the geometry
each color from the image should go?

5

Option: Varieties of projections

[Paul Bourke]

6

2

Option: unfold the surface

[Piponi2000]

7

Option: make an atlas

[Sander2001]

charts atlas surface

8

Option: it’’s the artist’’s problem

9

CAPE Evaluations

§ Fill out now, can be done on phone

§ Enthusiasm important to future offerings

§ Comments useful to future years

§ Some key innovations: modern OpenGL, GLSL;
feedback servers (including code), UCSD Online, …

§ Separately, please also evaluate the TAs

10

Outline

§ Types of projections

§ Interpolating texture coordinates

§ Broader use of textures

11

How to map object to texture?

§ To each vertex (x,y,z in object coordinates),
must associate 2D texture coordinates (s,t)

§ So texture fits “nicely” over object

12

3

Idea: Use Map Shape

§ Map shapes correspond to various projections
§ Planar, Cylindrical, Spherical

§ First, map (square) texture to basic map shape

§ Then, map basic map shape to object
§ Or vice versa: Object to map shape, map shape to square

§ Usually, this is straightforward
§ Maps from square to cylinder, plane, sphere well defined
§ Maps from object to these are simply spherical, cylindrical,

cartesian coordinate systems

13

Planar mapping

§ Like projections, drop z coord (s,t) = (x,y)

§ Problems: what happens near z = 0?

14

Cylindrical Mapping

§ Cylinder: r, θ, z with (s,t) = (θ/(2π),z)
§ Note seams when wrapping around (θ = 0 or 2π)

15

Spherical Mapping

§ Convert to spherical coordinates: use latitude/long.
§ Singularities at north and south poles

16

Cube Mapping

17

Cube Mapping

18

4

Outline

§ Types of projections

§ Interpolating texture coordinates

§ Broader use of textures

19

Gouraud Shading – Details

Scan line

 I1

 I2

 I3

 y1

 y2

 y3

 ys Ia Ib

Ia =

I1(ys − y2)+ I2(y1 − ys)
y1 − y2

Ib =

I1(ys − y3)+ I3(y1 − ys)
y1 − y3

Ip =

Ia(xb − xp)+ Ib(xp − xa)
xb − xa

Ip

Actual implementation efficient: difference
equations while scan converting

20

Artifacts

§ Wikipedia page
https://en.wikipedia.org/wiki/File:Perspective_correct_texture_mapp
ing.jpg

§ What artifacts do you see?

§ Why?

§ Why not in standard Gouraud shading?

§ Hint: problem is in interpolating parameters

21

Interpolating Parameters

§ The problem turns out to be fundamental to
interpolating parameters in screen-space
§ Uniform steps in screen space ≠ uniform steps in world space

22

Texture Mapping

Linear interpolation
of texture coordinates

Correct interpolation
with perspective divide

Hill Figure 8.42

23

Interpolating Parameters

§ Perspective foreshortening is not getting applied to
our interpolated parameters
§ Parameters should be compressed with distance
§ Linearly interpolating them in screen-space doesn’t do this

24

5

Perspective-Correct Interpolation

§ Skipping a bit of math to make a long story short…
§ Rather than interpolating u and v directly, interpolate u/z

and v/z
§ These do interpolate correctly in screen space
§ Also need to interpolate z and multiply per-pixel

§ Problem: we don’t know z anymore
§ Solution: we do know w ~ 1/z
§ So…interpolate uw and vw and w, and compute

u = uw/w and v = vw/w for each pixel
§ This unfortunately involves a divide per pixel

§ Wikipedia page

25

Texture Map Filtering

§ Naive texture mapping aliases badly

§ Look familiar?
int uval = (int) (u * denom + 0.5f);
int vval = (int) (v * denom + 0.5f);

int pix = texture.getPixel(uval, vval);

§ Actually, each pixel maps to a region in texture
§ |PIX| < |TEX|

§ Easy: interpolate (bilinear) between texel values
§ |PIX| > |TEX|

§ Hard: average the contribution from multiple texels
§ |PIX| ~ |TEX|

§ Still need interpolation!

26

Mip Maps

§ Keep textures prefiltered at multiple resolutions
§ For each pixel, linearly interpolate between

two closest levels (e.g., trilinear filtering)
§ Fast, easy for hardware

§ Why “Mip” maps?

27

MIP-map Example

§ No filtering:

§ MIP-map texturing:

AAAAAAAGH
MY EYES ARE BURNING

Where are my glasses?

28

Outline

§ Types of projections

§ Interpolating texture coordinates

§ Broader use of textures

29

Texture Mapping Applications

§ Modulation, light maps

§ Bump mapping

§ Displacement mapping

§ Illumination or Environment Mapping

§ Procedural texturing

§ And many more

30

6

Modulation textures

)))()(((),(SSTTL LL
n

SDAAE IKIKISRVKLNKIKItsTI ++•+•++= å

Map texture values to scale factor
W

oo
d

te
xt

ur
e

Texture
value

31

Bump Mapping

§ Texture = change in surface normal!

Sphere w/ diffuse texture Swirly bump map Sphere w/ diffuse texture
and swirly bump map

32

Displacement Mapping

33

Illumination Maps
§ Quake introduced illumination maps or light

maps to capture lighting effects in video games
Texture map:

Texture map
+ light map:

Light map

34

Environment Maps

Images from Illumination and Reflection Maps:
Simulated Objects in Simulated and Real Environments

Gene Miller and C. Robert Hoffman
SIGGRAPH 1984 “Advanced Computer Graphics Animation” Course Notes

35

Solid textures
Texture values indexed

by 3D location (x,y,z)
• Expensive storage, or
• Compute on the fly,

e.g. Perlin noise à

36

7

Procedural Texture Gallery

37 38

39 40

41 42

