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Computer Graphics

CSE 167 [Win 23], Lecture 18: Texture Mapping 

Ravi Ramamoorthi

http://viscomp.ucsd.edu/classes/cse167/wi23

Many slides from Greg Humphreys, formerly UVA and
Rosalee Wolfe, DePaul tutorial teaching texture mapping visually
Chapter 11 in text book covers some portions 
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To Do

§ Submit HW4 milestone by tomorrow

§ Prepare for final push on HW 4

§ Written assignment due Mar 15, 11:59pm
§ Individually, no collaboration, piazza posts
§ Open notes, online.  But understand what you turn in, 

and try to use your own words
§ No final

2

Texture Mapping

§ Important topic: nearly all objects textured
§ Wood grain, faces, bricks and so on
§ Adds visual detail to scenes

§ Meant as a fun and practically useful lecture

Polygonal model With surface texture
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Adding Visual Detail

§ Basic idea: use images instead of more 
polygons to represent fine scale color variation
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Parameterization

geometry

+ =

image texture map

• Q: How do we decide where on the geometry
each color from the image should go?
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Option: Varieties of projections

[Paul Bourke]
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Option: unfold the surface

[Piponi2000]
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Option: make an atlas

[Sander2001]

charts atlas surface
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Option: it’’s the artist’’s problem
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CAPE Evaluations

§ Fill out now, can be done on phone

§ Enthusiasm important to future offerings

§ Comments useful to future years

§ Some key innovations: modern OpenGL, GLSL; 
feedback servers (including code), UCSD Online, …

§ Separately, please also evaluate the TAs
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Outline

§ Types of projections

§ Interpolating texture coordinates 

§ Broader use of textures
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How to map object to texture?

§ To each vertex (x,y,z in object coordinates), 
must associate 2D texture coordinates (s,t)

§ So texture fits “nicely” over object
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Idea: Use Map Shape

§ Map shapes correspond to various projections
§ Planar, Cylindrical, Spherical

§ First, map (square) texture to basic map shape

§ Then, map basic map shape to object
§ Or vice versa: Object to map shape, map shape to square

§ Usually, this is straightforward
§ Maps from square to cylinder, plane, sphere well defined
§ Maps from object to these are simply spherical, cylindrical, 

cartesian coordinate systems
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Planar mapping

§ Like projections, drop z coord (s,t) = (x,y)

§ Problems: what happens near z = 0?
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Cylindrical Mapping

§ Cylinder: r, θ, z with (s,t) = (θ/(2π),z)
§ Note seams when wrapping around (θ = 0 or 2π)
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Spherical Mapping

§ Convert to spherical coordinates: use latitude/long.
§ Singularities at north and south poles
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Cube Mapping

17

Cube Mapping
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Outline

§ Types of projections

§ Interpolating texture coordinates 

§ Broader use of textures
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Gouraud Shading – Details

Scan line

  I1

  I2

  I3

  y1

  y2

  y3

 ys  Ia  Ib

  
Ia =

I1(ys − y2)+ I2(y1 − ys )
y1 − y2

  
Ib =

I1(ys − y3)+ I3(y1 − ys )
y1 − y3

  
Ip =

Ia(xb − xp )+ Ib(xp − xa)
xb − xa

 
Ip

Actual implementation efficient: difference 
equations while scan converting
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Artifacts

§ Wikipedia page
https://en.wikipedia.org/wiki/File:Perspective_correct_texture_mapp
ing.jpg

§ What artifacts do you see?

§ Why?

§ Why not in standard Gouraud shading?

§ Hint: problem is in interpolating parameters
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Interpolating Parameters

§ The problem turns out to be fundamental to 
interpolating parameters in screen-space
§ Uniform steps in screen space ≠ uniform steps in world space
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Texture Mapping

Linear interpolation
of texture coordinates

Correct interpolation
with perspective divide

Hill Figure 8.42
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Interpolating Parameters

§ Perspective foreshortening is not getting applied to 
our interpolated parameters
§ Parameters should be compressed with distance
§ Linearly interpolating them in screen-space doesn’t do this 
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Perspective-Correct Interpolation

§ Skipping a bit of math to make a long story short…
§ Rather than interpolating u and v directly, interpolate u/z

and v/z
§ These do interpolate correctly in screen space
§ Also need to interpolate z and multiply per-pixel

§ Problem: we don’t know z anymore
§ Solution: we do know w ~ 1/z
§ So…interpolate uw and vw and w, and compute 

u = uw/w  and v = vw/w for each pixel
§ This unfortunately involves a divide per pixel

§ Wikipedia page
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Texture Map Filtering

§ Naive texture mapping aliases badly 

§ Look familiar?
int uval = (int) (u * denom + 0.5f);
int vval = (int) (v * denom + 0.5f);

int pix = texture.getPixel(uval, vval);

§ Actually, each pixel maps to a region in texture
§ |PIX| < |TEX| 

§ Easy: interpolate (bilinear) between texel values 
§ |PIX| > |TEX|

§ Hard: average the contribution from multiple texels
§ |PIX| ~ |TEX|

§ Still need interpolation!
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Mip Maps

§ Keep textures prefiltered at multiple resolutions
§ For each pixel, linearly interpolate between 

two closest levels (e.g., trilinear filtering) 
§ Fast, easy for hardware

§ Why “Mip” maps?
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MIP-map Example

§ No filtering:

§ MIP-map texturing:

AAAAAAAGH
MY EYES ARE BURNING

Where are my glasses?
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Outline

§ Types of projections

§ Interpolating texture coordinates

§ Broader use of textures
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Texture Mapping Applications

§ Modulation, light maps

§ Bump mapping

§ Displacement mapping

§ Illumination or Environment Mapping

§ Procedural texturing

§ And many more
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Modulation textures
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Bump Mapping

§ Texture = change in surface normal!

Sphere w/ diffuse texture Swirly bump map Sphere w/ diffuse texture
and swirly bump map
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Displacement Mapping
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Illumination Maps
§ Quake introduced illumination maps or light 

maps to capture lighting effects in video games
Texture map:

Texture map
+ light map:

Light map
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Environment Maps

Images from Illumination and Reflection Maps: 
Simulated Objects in Simulated and Real Environments

Gene Miller and C. Robert Hoffman
SIGGRAPH 1984 “Advanced Computer Graphics Animation” Course Notes
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Solid textures
Texture values indexed 

by 3D location (x,y,z)
• Expensive storage, or
• Compute on the fly,

e.g. Perlin noise à
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Procedural Texture Gallery
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