Computer Graphics

CSE 167 [Win 23], Lectures 16, 17:
Nuts and bolts of Ray Tracing

Ravi Ramamoorthi
http://viscomp.ucsd.edu/classes/cse167/wi23

Acknowledgements: Thomas Funkhouser and Greg Humphreys

To Do

START EARLY on HW 4

Milestone is due on Mar 10

Outline in Code

Image Raytrace (Camera cam, Scene scene, int width, int height)
{
Image image = new Image (width, height) ;
for (inti=0;i<height; i++)
for (intj=0;j <width ; j++) {
Ray ray = RayThruPixel (cam, i, j) ;
Intersection hit = Intersect (ray, scene) ;
imageli][j] = FindColor (hit) ;
}

return image ;

Heckbert’ s Business Card Ray Tracer

typedef struct{double x,y,z}vec;vec U,black,amb={.02,.02,.02};struct sphere{ vec cen,col
double rad kd ks, ktkl,ir}*s, ‘best,sph[}={0.,6. 1.,1..9, .05,2,.850.,17,-1.8.,-51., g,
.7,30.,.0512,1.8.-5,.1,.8.8,1..3,.7,0.0.,123.-6.,15.1..8,1.7.,0.,0.,0.,.6,1.5,-3.,-3.12,,
8,1, 1.5.0.,0.0.,.5,1.5,};yx;double u,b,tmin,sqrt(),tan();double vdot(A,B)vec A ,B{return A.x
*Bx+Ay*B.y+A.z*B.z;)vec vcomb(a,AB)double a;vec A B;{B.x+=a* A.x;B.y+=a"Ay;B.z+=a’A z;
return B;jvec vunit(A)vec A;{return veomb(1./sqrt( vdot(A,A)),A,black);}struct sphere’intersect
(P,D)vec P,D;{best=0;tmin=1e30;s= sph+5;while(s-->sph)b=vdot(D,U=vcomb(-1.,P,s->cen)),
u=b*b-vdot(U,U)+s->rad*s ->rad,u=u>0?sqrt(u):1€31,u=b-u>1e-7?b-u:b+u tmin=u>=1e-78&
u<tmin?best=s,u: tmin;return best;}vec trace(level,P,D)vec P,D;{double d.eta,e;vec N,color;
struct sphere®s,*l;if(!level--)return black;if(s=intersect(P,D));else return amb;color=amb;eta=
s->ir;,d= -vdot(D,N=vunit(vcomb(-1.,P=vcomb(tmin,D,P),s->cen )));if(d<0)N=vcomb(-1.,N,black),
eta=1/eta,d= -d;l=sph+5; while(l-->sph)if((e=I ->kI*vdot(N, U=vunit(vcomb(-1.,P,I->cen))))>0&&
intersect(P,U)==l)color=vcomb(e ,I->color,color);U=s->color;color.x*=U.x;color.y*=U.y;color.z
*=U.z;e=1-eta" eta*(1-d*d);retum vcomb(s->kt,e>0?trace(level,P ,vcomb(eta,D,vcomb(eta*d-
sqrt (e),N,black))):black,vcomb(s->ks,trace(level,P,vcomb(2*d,N,D)),vcomb(s->kd, color,vcomb
(s->kl,U,black))));}main(){printf(*%d %d\n",32,32);while(yx<32*32) U.x=yx%32-32/2,U.z=32/2-
yx++/32,U.y=32/2/tan(25/114.5915590261),U=vcomb(255., trace(3,black vunit(U)),black),printf
("%.0f %.0f %.0f\n",U);}/‘minray!*/

Outline

Camera Ray Casting (choose ray directions)
Ray-object intersections

Ray-tracing transformed objects

Lighting calculations

Recursive ray tracing

Ray Casting

Virtual Viewpoint

Virtual Screen Objects




Finding Ray Direction

Goal is to find ray direction for given pixel i and j

Many ways to approach problem
Objects in world coord, find dirn of each ray (we do this)
Camera in canonical frame, transform objects (OpenGL)

Basic idea

Ray has origin (camera center) and direction
Find direction given camera params and i and |

Camera params as in gluLookAt
Lookfrom[3], LookAt[3], up[3], fov

Constructing a coordinate frame?

We want to associate w with a, and v with b

But a and b are neither orthogonal nor unit norm
And we also need to find u

e @
[l

bxw
U= —
[loxw|

V=wxXxu

From basic math lecture - Vectors: Orthonormal Basis Frames

Canonical viewing geometry

ou+pfv-w

ray:eye+t‘au+ﬂv_wy

_.(fovx 'j—(wfdth/z)) _ fovy} ((he/ght/Z)—/‘
“’ta”[ 2 ]X[ width | 2 B=tan| 5= X\ "heignt 2

Similar to gluLookAt derivation

gluLookAt(eyex, eyey, eyez, centerx, centery, centerz, upx,

upy, upz)
Camera at eye, looking at center, with up direction being up

Up vector

From earlier lecture on deriving gluLookAt

Camera coordinate frame

a

w= V=wxu
[l

We want to position camera at origin, looking down —Z dirn
Hence, vector a is given by eye — center

The vector b is simply the up vectorf

Outline

Camera Ray Casting (choosing ray directions)
Ray-object intersections

Ray-tracing transformed objects

Lighting calculations

Recursive ray tracing




Outline in Code Ray-Sphere Intersection

Image Raytrace (Camera cam, Scene scene, int width, int height)

{
Image image = new Image (width, height) ;
for (inti=0; i< height; i++)
for (intj =0 ;j <width ; j++) {
Ray ray = RayThruPixel (cam, i, j) ;

ray = P=P, +Pt
sphere=(P-C)+(P-C)-r*=0

Intersection hit = Intersect (ray, scene) ;
imageli][j] = FindColor (hit) ;
}

return image ;

Ray-Sphere Intersection Ray-Sphere Intersection
ray =P= t*(P,+P)+2t P,+(P,~C)+(P,~C)+(P,-C)-r*=0

sphere = (P - é) . (15 _ é)— r2=0 Solve quadratic equations for t

Substitute L .
2 real positive roots: pick smaller root

) + Pt

sphere = (P, +Pt-C)«(P,+Pt-C)-r?=0
Simplify
t2([31 -I:'31)+2t151 .(150 —é)+(/30 _é),(ﬁo ~C)-r?

Both roots same: tangent to sphere

ray =P=P
+

One positive, one negative root: ray
origin inside sphere (pick + root)

Complex roots: no intersection (check/-
discriminant of equation first)

Ray-Sphere Intersection Ray-Triangle Intersection

Intersection point: ray = P= If’O A I51t One approach: Ray-Plane intersection, then

.. . check if inside triangle B
Normal (for sphere, this is same as coordinates % (C-A)x(B-A)

in sphere frame of reference, useful other tasks) Plane equation: " lc=Amx@E=-A]
normal = "3_9 plane =P +ii— A«ii=0
P-¢




Ray-Triangle Intersection

One approach: Ray-Plane intersection, then
check if inside triangle

Plane equation:

plane=P+ii—A-n=0

Ray inside Triangle

P=aA+pBB+yC
20,820,720
o+B+y=1

P-A=B(B-A)+y(C-A)
0<pB<1,0<y<1
B+y<i

Ray Scene Intersection

Intersection FindIntersection(Ray ray, Scene scene)

!
v

min_t = infinity
min_primitive = NULL
For each primitive in scene {
t= Intersect(ray, primitive);
if (t> 0 && t < min_t) then
min_primitive = primitive
min_t =t
S
f
return Intersection(min_t, min_primitive)

Ray inside Triangle

Once intersect with plane, still need to find if in

triangle

Many possibilities for triangles, general polygons
(point in polygon tests)

We find parametrically [barycentric coordinates]. Also
useful for other applications (texture mapping)
B

P=0A+pBB+yC
20,820,720
o+ B+y=1

Other primitives
Much early work in ray tracing focused on ray-
primitive intersection tests
Cones, cylinders, ellipsoids
Boxes (especially useful for bounding boxes)
General planar polygons
Many more

Consult chapter in Glassner (handed out) for
more details and possible extra credit

Outline

Camera Ray Casting (choosing ray directions)
Ray-object intersections

Ray-tracing transformed objects

Lighting calculations

Recursive ray tracing




Transformed Objects Ray-Tracing Transformed Objects

E.g. transform sphere into ellipsoid We have an optimized ray-sphere test
. . . But we want to ray trace an ellipsoid...
Could develop routine to trace ellipsoid

(compute parameters after transformation) Solution: Ellipsoid transforms sphere

; ; ; Apply inverse transform to ray, use ray-sphere
May be useful for triangles, since triangle after Allows for instancing (traffic jam of cars)
transformation is still a triangle in any case Same idea for other primitives

But can also use original optimized routines

Transformed Objects Outline

Consider a general 4x4 transform M Camera Ray Casting (choosing ray directions)
Will need to implement matrix stacks like in OpenGL

. Ray-object intersections

Apply inverse transform M- to ray y-0b)
Locations stored and transform in homogeneous Ray-tracing transformed objects
coordinates
Vectors (ray directions) have homogeneous coordinate Lighting calculations
set to O [so there is no action because of translations]

. . i Recursive ray tracin
Do standard ray-surface intersection as modified y 9

Transform intersection back to actual coordinates

Intersection point p transforms as Mp
Distance to intersection if used may need recalculation
Normals n transform as Mn. Do all this before lighting

Outline in Code Shadows Light Source

Image Raytrace (Camera cam, Scene scene, int width, int height)
{
Image image = new Image (width, height) ;
for (inti=0;i<height; i++)
for (intj=0;j <width ; j++) {
Ray ray = RayThruPixel (cam, i, j) ; Virtual Viewpoint
Intersection hit = Intersect (ray, scene) ;
imagel[i][j] = FindColor (hit) ;
} Virtual Screen Objects
EUmnEE2s Shatiowagyddiighbisibcked: djettinishadow




Shadows: Numerical Issues Lighting Model

* Numerical inaccuracy may cause intersection to be _
below surface (effect exaggerated in figure) Similar to OpenGL

* Causing surface to incorrectly shadow itself Lighting model parameters (global)

+ Move a little towards light before shooting shadow ray ﬁtrpbieni_r gb Al .
enuation const linear quadratic

i

—_ 0
const+lin* d + quad * d*

Per light model parameters
Directional light (direction, RGB parameters)
Point light (location, RGB parameters)
Some differences from HW 2 syntax

Material Model Shading Model

Diffuse reflectance (v g b) 1=K +K,+3 L (K,max (|,n,0)+ K (max(h -n0)))
Specular reflectance (r g b) i=1

Shininess s Global ambient term, emission from material

Emission (r g b) For each light, diffuse specular terms

All as in OpenGL Note visibility/shadowing for each light (not in OpenGL)

Evaluated per pixel per light (not per vertex)

Outline Mirror Reflections/Refractions

Camera Ray Casting (choosing ray directions)
Ray-object intersections

Ray-tracing transformed objects

Lighting calculations

) ) Virtual Viewpoint
Recursive ray tracing

Virtual Screen Objects
Generate reflected ray in mirror direction,
Get reflections and refractions of objects




Turner Whitted 1980

Recursive Shading Model

1=K, +K_ + z L(K,max (I, +n,0)+ K (max(h, - n,0))°)+

Highlighted terms are recursive specularities [mirror
reflections] and transmission (latter is extra credit)

Trace secondary rays for mirror reflections and
refractions, include contribution in lighting model

GetColor calls RayTrace recursively (the | values in
equation above of secondary rays are obtained by
recursive calls)

Effects needed for Realism

(Soft) Shadows

Reflections (Mirrors and Glossy)
Transparency (Water, Glass)
Interreflections (Color Bleeding)

Complex Illumination (Natural, Area Light)
Realistic Materials (Velvet, Paints, Glass)

Discussed in this lecture so far

Not discussed but possible with distribution ray tracing
Hard (but not impossible) with ray tracing; radiosity methods

Basic idea

For each pixel
Trace Primary Eye Ray, find intersection

Trace Secondary Shadow Ray(s) to all light(s)

Color = Visible ? lllumination Model : 0 ;

Trace Reflected Ray

Color += reflectivity * Color of reflected ray

Problems with Recursion

Reflection rays may be traced forever

Generally, set maximum recursion depth

Same for transmitted rays (take refraction into account

Some basic add ons

Area light sources and soft shadows: break into
grid of n x n point lights
Use jittering: Randomize direction of shadow ray
within small box for given light source direction
Jittering also useful for antialiasing shadows when
shooting primary rays

More complex reflectance models
Simply update shading model
But at present, we can handle only mirror global
illumination calculations




Acceleration Acceleration Structures

Testing each object for each ray is slow Bounding boxes (possibly hierarchical)
Fewer Rays
Adaptive sampling, depth control
Generalized Rays

) ) o Bounding Box
Beam tracing, cone tracing, pencil tracing etc.
Faster Intersections
Optimized Ray-Object Intersections

Fewer Intersections

If no intersection bounding box, needn’t check objects

Spatial Hierarchies (Oct-trees, kd trees, BSP trees)

Bounding Volume Hierarchies 1 Bounding Volume Hierarchies 2

+ Build hierarchy of bounding volumes

» Use hierarchy to accelerate ray intersections
o Bounding volume of interior node contains all children

o Intersect node contents only if hit bounding volume

Bounding Volume Hierarchies 3 Acceleration Structures: Grids

+ Sort hits & detect early termination

FindIntersection(Ray ray, Node node)
i
t

// Find intersections with child node bounding volumes
// Sort intersections front to back

// Process intersections (checking for early termination)
min_t = infinity;
for each intersected child i {
if (min_t < bv_t[i]) break;
shape_t = FindIntersection(ray, child);
if (shape_t < min_t) { min_t = shape_t;}
j

return min_t;




Uniform Grid: Problems

 Potential problem:

o How choose suitable grid resolution?

Too little benefit
if grid is too coarse

Too much cost

if grid is too fine

Octree traversal

» Trace rays through neighbor cells

o Fewer cells
o More complex neighbor finding

Trade-off fewer cells for

more expensive traversal

CAPE Evaluations

Fill out now, can be done on phone
Enthusiasm important to future offerings
Comments useful to future years

Some key innovations: modern OpenGL, GLSL;

feedback servers (including code), UCSD online, ...

Separately, please also evaluate the TAs

+ Construct adaptive grid over scene

o Recursively subdivide box-shaped cells into 8 octants
o Index primitives by overlaps with cells

e

{

Generally fewer cells I

Other Accelerations

Screen space coherence
o Check last hit first

o Beam tracing

o Pencil tracing

o Cone tracing

Memory coherence

o Large scenes

Parallelism
o Ray casting is “embarassingly parallelizable”

etc.

Ray Tracing Acceleration Structures

Bounding Volume Hierarchies (BVH)
Uniform Spatial Subdivision (Grids)

Binary Space Partitioning (BSP Trees)
Axis-aligned often for ray tracing: kd-trees

Conceptually simple, implementation a bit tricky
Lecture relatively high level: Start early, go to section
Remember that acceleration a small part of grade




Math of 2D Bounding Box Test

Can you find a t in range e

ift
returnfalse;

else t t
xmin xmax ymin ymax
returntrue; _—

>t ORt >t

xmin ymax ymin

No intersection if x and y ranges don’ t overlap

Hierarchical Bounding Box Test

If ray hits root box
Intersect left subtree
Intersect right subtree
Merge intersections (find closest one)

Standard hierarchical traversal
But caveat, since bounding boxes may overlap

At leaf nodes, must intersect objects

Uniform Spatial Subdivision

Different idea: Divide space rather than objects

In BVH, each object is in one of two sibling nodes
A point in space may be inside both nodes

In spatial subdivision, each space point in one node
But object may lie in multiple spatial nodes

Simplest is uniform grid (have seen this already)
Challenge is keeping all objects within cell

And in traversing the grid

Bounding Box Test

Ray-Intersection is simple coordinate check
Intricacies with test, see book

Hierarchical Bounding Boxes

Creating Bounding Volume Hierarchy

function bvh-node::create (object array A, int AXIS)
N = A.length() ;
if (N == 1) {left = A[0]; right = NULL; bbox = bound(A[0]);}
else if (N ==2){
left = A[0] ; right = A[1] ;
bbox = combine(bound(A[0]),bound(A[1])) ;
else
Find midpoint m of bounding box of A along AXIS
Partition A into lists of size k and N-k around m
left = new bvh-node (A[O...k],(AXIS+1) mod 3) ;
right = new bvh-node(Alk+1...N-1],(AXIS+1) mod 3);
bbox = combine (left -> bbox, right -> bbox) ;

From page 305 of book

Traversal of Grid High Level

Fast algo. possible

(more on board)

10



BSP Trees

Used for visibility and ray tracing
Book considers only axis-aligned splits for ray tracing
Sometimes called kd-tree for axis aligned

Split space (binary space partition) along planes
Fast queries and back-to-front (painter’ s) traversal

Construction is conceptually simple
Select a plane as root of the sub-tree
Split into two children along this root
Random polygon for splitting plane (may need to split
polygons that intersect it)

BSP slides courtesy Prof. O’ Brien

First Split

Third Split

Initial State

Second Split

Fourth Split

11



Final BSP Tree

Interactive Raytracing

Ray tracing historically slow

Now viable alternative for complex scenes
Key is sublinear complexity with acceleration;
need not process all triangles in scene

Allows many effects hard in hardware

Today graphics hardware and software (NVIDIA
Optix 5, RTX chips claim 10G rays per second).

Tiger Demo: Video

— Ring - Stencil Routing —— Cornell Box - Bitonic Sort

—_—

< 4

/ k., o @ 5122612,
! A 65K photons
{

85 @ 512x384, 16K photons

Glass Ball - Stencil Routing Cornell Box - Increased Search Radius

115 @ 512x384, 5K photons.

BSP Trees Cont’ d

Continue splitting until leaf nodes

Visibility traversal in order
Child one
Root
Child two

Child one chosen based on viewpoint
Same side of sub-tree as viewpoint

BSP tree built once, used for all viewpoints
More details in book

168 lectures (UCSD online) more detail re acceln

Raytracing on Graphics Hardware

Modern Programmable Hardware general
streaming architecture

Can map various elements of ray tracing

Kernels like eye rays, intersect etc.

In vertex or fragment programs

Convergence between hardware, ray tracing
[Purcell et al. 2002, 2003]
http://graphics.stanford.edu/papers/photongfx




