
1

Computer Graphics

CSE 167 [Win 23], Lecture 15: Ray Tracing

Ravi Ramamoorthi

http://viscomp.ucsd.edu/classes/cse167/wi23

1

To Do
§ Midterm is graded? Mean/Median

§ If you did poorly, remember only one assignment

§ HW 3 due tomorrow Mar 1. Any questions?

§ HW 4 milestone due Mar 10, full homework Mar 21

§ START EARLY; FIND A PARTNER IF POSSIBLE

§ Likely hardest assignment you will have at UCSD
(but most rewarding). Some comments from edX:
§ The last assignment took me 50+ hours brutal but worth it
§ The final project (a ray tracer from scratch) was great; it’s

remarkable that the instructor ... students all the tools to
successfully complete it.

2

Effects needed for Realism

§ (Soft) Shadows

§ Reflections (Mirrors and Glossy)

§ Transparency (Water, Glass)

§ Interreflections (Color Bleeding)

§ Complex Illumination (Natural, Area Light)

§ Realistic Materials (Velvet, Paints, Glass)

§ And many more

3

Image courtesy Paul Heckbert 1983

4

Ray Tracing

§ Different Approach to Image Synthesis as
compared to Hardware pipeline (OpenGL)

§ Pixel by Pixel instead of Object by Object

§ Easy to compute shadows/transparency/etc

5

Outline
§ History

§ Basic Ray Casting (instead of rasterization)
§ Comparison to hardware scan conversion

§ Shadows / Reflections (core algorithm)

§ Ray-Surface Intersection

§ Optimizations

§ Current Research

6

2

Ray Tracing: History

§ Appel 68

§ Whitted 80 [recursive ray tracing]
§ Landmark in computer graphics

§ Lots of work on various geometric primitives

§ Lots of work on accelerations
§ Current Research

§ Real-Time raytracing (historically, slow technique)
§ Ray tracing architecture

7

Ray Tracing History

8

Ray Tracing History

9

From SIGGRAPH 18

Real Photo: Instructor and Turner Whitted at SIGGRAPH 18

10

Outline in Code
Image Raytrace (Camera cam, Scene scene, int width, int height)
{

Image image = new Image (width, height) ;
for (int i = 0 ; i < height ; i++)

for (int j = 0 ; j < width ; j++) {
Ray ray = RayThruPixel (cam, i, j) ;
Intersection hit = Intersect (ray, scene) ;
image[i][j] = FindColor (hit) ;
}

return image ;
}
11

Outline

§ History

§ Basic Ray Casting (instead of rasterization)
§ Comparison to hardware scan conversion

§ Shadows / Reflections (core algorithm)

§ Ray-Surface Intersection

§ Optimizations

§ Current Research

12

3

Ray Casting

Produce same images as with OpenGL
§ Visibility per pixel instead of Z-buffer
§ Find nearest object by shooting rays into scene
§ Shade it as in standard OpenGL

13

Ray Casting

Virtual Viewpoint

Virtual Screen Objects

Ray misses all objects: Pixel colored blackRay intersects object: shade using color, lights, materialsMultiple intersections: Use closest one (as does OpenGL)

14

Comparison to hardware scan-line

§ Per-pixel evaluation, per-pixel rays (not scan-convert
each object). On face of it, costly

§ But good for walkthroughs of extremely large models
(amortize preprocessing, low complexity)

§ More complex shading, lighting effects possible

15

Outline

§ History

§ Basic Ray Casting (instead of rasterization)
§ Comparison to hardware scan conversion

§ Shadows / Reflections (core algorithm)

§ Ray-Surface Intersection

§ Optimizations

§ Current Research

16

Shadows

Virtual Viewpoint

Virtual Screen Objects

Light Source

Shadow ray to light is unblocked: object visibleShadow ray to light is blocked: object in shadow

17

Shadows: Numerical Issues
• Numerical inaccuracy may cause intersection to be

below surface (effect exaggerated in figure)

• Causing surface to incorrectly shadow itself
• Move a little towards light before shooting shadow ray

18

4

Mirror Reflections/Refractions

Virtual Viewpoint

Virtual Screen Objects
Generate reflected ray in mirror direction,
Get reflections and refractions of objects

19

Recursive Ray Tracing

For each pixel
§ Trace Primary Eye Ray, find intersection

§ Trace Secondary Shadow Ray(s) to all light(s)
§ Color = Visible ? Illumination Model : 0 ;

§ Trace Reflected Ray
§ Color += reflectivity * Color of reflected ray

20

Problems with Recursion

§ Reflection rays may be traced forever

§ Generally, set maximum recursion depth

§ Same for transmitted rays (take refraction into
account)

21

Turner Whitted 1980

22

Effects needed for Realism
• (Soft) Shadows
• Reflections (Mirrors and Glossy)
• Transparency (Water, Glass)
• Interreflections (Color Bleeding)
• Complex Illumination (Natural, Area Light)
• Realistic Materials (Velvet, Paints, Glass)

Discussed in this lecture
Not discussed but possible with distribution ray tracing
Hard (but not impossible) with ray tracing; radiosity methods

23

Outline

§ History

§ Basic Ray Casting (instead of rasterization)
§ Comparison to hardware scan conversion

§ Shadows / Reflections (core algorithm)

§ Ray-Surface Intersection

§ Optimizations

§ Current Research

24

5

Ray/Object Intersections

§ Heart of Ray Tracer
§ One of the main initial research areas
§ Optimized routines for wide variety of primitives

§ Various types of info
§ Shadow rays: Intersection/No Intersection
§ Primary rays: Point of intersection, material, normals
§ Texture coordinates

§ Work out examples
§ Triangle, sphere, polygon, general implicit surface

25

Ray-Sphere Intersection

ray ≡

P =


P0 +


P1t

sphere ≡ (

P −

C) i (


P −

C)− r 2 = 0

C

P0

26

Ray-Sphere Intersection

ray ≡

P =


P0 +


P1t

sphere ≡ (

P −

C) i (


P −

C)− r 2 = 0

Substitute

ray ≡

P =


P0 +


P1t

sphere ≡ (

P0 +


P1t −


C) i (


P0 +


P1t −


C)− r 2 = 0

Simplify

 t
2(

P1 i

P1)+ 2t


P1 i (


P0 −


C)+ (


P0 −


C) i (


P0 −


C)− r 2 = 0

27

Ray-Sphere Intersection

 t
2(

P1 i

P1)+ 2t


P1 i (


P0 −


C)+ (


P0 −


C) i (


P0 −


C)− r 2 = 0

Solve quadratic equations for t

§ 2 real positive roots: pick smaller root

§ Both roots same: tangent to sphere

§ One positive, one negative root: ray
origin inside sphere (pick + root)

§ Complex roots: no intersection (check
discriminant of equation first)

28

Ray-Sphere Intersection

§ Intersection point:

§ Normal (for sphere, this is same as coordinates
in sphere frame of reference, useful other tasks)

 ray ≡

P =


P0 +


P1t

normal =

P −

C


P −

C

29

Ray-Triangle Intersection

§ One approach: Ray-Plane intersection, then
check if inside triangle

§ Plane equation:
A

B

C

n = (C − A)× (B − A)

(C − A)× (B − A)

 plane ≡

P i

n −

A i

n = 0

30

6

Ray-Triangle Intersection

§ One approach: Ray-Plane intersection, then
check if inside triangle

§ Plane equation:

§ Combine with ray equation:

A
B

C

n = (C − A)× (B − A)

(C − A)× (B − A)

 plane ≡

P i

n −

A i

n = 0

ray ≡

P =


P0 +


P1t

(

P0 +


P1t) i


n =

A i

n

t =

A i

n −

P0 i

n

P1 i

n

31

Ray inside Triangle
§ Once intersect with plane, still need to find if in

triangle

§ Many possibilities for triangles, general polygons
(point in polygon tests)

§ We find parametrically [barycentric coordinates]. Also
useful for other applications (texture mapping)

A
B

C

P
α β

γ

P = αA+ βB + γC
α ≥ 0,β ≥ 0,γ ≥ 0
α + β + γ = 1

32

Ray inside Triangle

A
B

C

P
α β

γ

P = αA+ βB + γC
α ≥ 0,β ≥ 0,γ ≥ 0
α + β + γ = 1

 P − A = β(B − A)+ γ (C − A)

0 ≤ β ≤1 , 0 ≤ γ ≤1
β + γ ≤1

33

Other primitives

§ Much early work in ray tracing focused on ray-primitive
intersection tests

§ Cones, cylinders, ellipsoids

§ Boxes (especially useful for bounding boxes)

§ General planar polygons

§ Many more

§ Many references. For example, chapter in Glassner
introduction to ray tracing (see me if interested)

34

Ray-Tracing Transformed Objects

We have an optimized ray-sphere test
§ But we want to ray trace an ellipsoid…

Solution: Ellipsoid transforms sphere
§ Apply inverse transform to ray, use ray-sphere
§ Allows for instancing (traffic jam of cars)

Mathematical details worked out in class

35

Transformed Objects
§ Consider a general 4x4 transform M

§ Will need to implement matrix stacks like in OpenGL

§ Apply inverse transform M-1 to ray
§ Locations stored and transform in homogeneous

coordinates
§ Vectors (ray directions) have homogeneous coordinate

set to 0 [so there is no action because of translations]

§ Do standard ray-surface intersection as modified

§ Transform intersection back to actual coordinates
§ Intersection point p transforms as Mp
§ Distance to intersection if used may need recalculation
§ Normals n transform as M-tn. Do all this before lighting

36

7

Outline

§ History

§ Basic Ray Casting (instead of rasterization)
§ Comparison to hardware scan conversion

§ Shadows / Reflections (core algorithm)

§ Ray-Surface Intersection

§ Optimizations

§ Current Research

37

Acceleration

Testing each object for each ray is slow
§ Fewer Rays

Adaptive sampling, depth control
§ Generalized Rays

Beam tracing, cone tracing, pencil tracing etc.
§ Faster Intersections

§ Optimized Ray-Object Intersections
§ Fewer Intersections

We just discuss some approaches at high level; chapter 13 briefly covers

38

Acceleration Structures

Bounding boxes (possibly hierarchical)
If no intersection bounding box, needn’t check objects

Bounding Box

Ray

Spatial Hierarchies (Oct-trees, kd trees, BSP trees)

39

Acceleration Structures: Grids

40

Acceleration and Regular Grids

§ Simplest acceleration, for example 5x5x5 grid

§ For each grid cell, store overlapping triangles

§ March ray along grid (need to be careful with
this), test against each triangle in grid cell

§ More sophisticated: kd-tree, oct-tree bsp-tree

§ Or use (hierarchical) bounding boxes

§ Try to implement some acceleration in HW 4

41

Outline

§ History

§ Basic Ray Casting (instead of rasterization)
§ Comparison to hardware scan conversion

§ Shadows / Reflections (core algorithm)

§ Ray-Surface Intersection

§ Optimizations

§ Current Research

42

8

Interactive Raytracing

§ Ray tracing historically slow

§ Now viable alternative for complex scenes
§ Key is sublinear complexity with acceleration;

need not process all triangles in scene

§ Allows many effects hard in hardware

§ NVIDIA OptiX ray-tracing API like OpenGL
§ Today: TuringRT 10G rays/second: Video

43 44

Raytracing on Graphics Hardware

§ Modern Programmable Hardware general
streaming architecture

§ Can map various elements of ray tracing

§ Kernels like eye rays, intersect etc.

§ In vertex or fragment programs

§ Convergence between hardware, ray tracing

[Purcell et al. 2002, 2003]

http://graphics.stanford.edu/papers/photongfx

45 46

