
1

Computer Graphics

CSE 167 [Win 23], Lecture 13: Raster Graphics, Color

Ravi Ramamoorthi

http://viscomp.ucsd.edu/classes/cse167/wi23

1

Lecture Overview
§ Many basic things tying together course

§ Is part of the material, will be covered (briefly) on midterm

§ Raster graphics

§ Gamma Correction

§ Color

§ Hardware pipeline and rasterization

§ Displaying Images: Ray Tracing and Rasterization
§ Essentially what this course is about (HW 2 and HW 4)

§ Introduced now so could cover basics for HW 1,2,3
Some images from wikipedia

2

Images and Raster Graphics
§ Real world is continuous (almost)

§ How to represent images on a display?

§ Raster graphics: use a bitmap with discrete pixels

§ Raster scan CRT
(paints image
line by line)

§ Cannot be resized without loss

§ Compare to vector graphics
§ Resized arbitrarily. For drawings
§ But how to represent photos, CG?

3

Displays and Raster Devices
§ CRT, flat panel, television (rect array of pixels)

§ Printers (scanning: no physical grid but print ink)

§ Digital cameras (grid light-sensitive pixels)

§ Scanner (linear array of pixels swept across)

§ Store image as 2D array (of RGB [sub-pixel] values)
§ In practice, there may be resolution mismatch, resize
§ Resize across platforms (phone, screen, large TV)

§ Vector image: description of shapes (line, circle, …)
§ E.g., line art such as in Adobe Illustrator
§ Resolution-Independent but must rasterize to display
§ Doesn’t work well for photographs, complex images

4

Resolutions
§ Size of grid (1920x1200 = 2,304,000 pixels)

§ 32 bit of memory for RGBA framebuffer 8+ MB

§ For printers, pixel density (300 dpi or ppi)
§ Printers often binary or CMYK, require finer grid
§ iPhone “retina display” > 300 dpi. At 12 inches,

pixels closer than retina’s ability to distinguish angles

§ Digital cameras in Mega-Pixels (often > 10 MP)
§ Color filter array (Bayer Mosaic)
§ Pixels really small (micron)

5

Monitor Intensities

§ Intensity usually stored with 8 bits [0…255]

§ HDR can be 16 bits or more [0…65535]

§ Resolution-independent use [0…1] intermediate

§ Monitor takes input value [0…1] outputs intensity
§ Non-zero intensity for 0, black level even when off
§ 1.0 is maximum intensity (output 1.0/0.0 is contrast)
§ Non-linear response (as is human perception)
§ 0.5 may map to 0.25 times the response of 1.0
§ Gamma characterization and gamma correction
§ Some history from CRT physics and exponential forms

6

2

Lecture Overview
§ Many basic things tying together course

§ Raster graphics

§ Gamma Correction

§ Color

§ Hardware pipeline and rasterization

§ Displaying Images: Ray Tracing and Rasterization
§ Essentially what this course is about (HW 2 and HW 4)

Some images from wikipedia

7

Nonlinearity and Gamma

§ Exponential function
§ I is displayed intensity, a is pixel value
§ For many monitors γ is between 1.8 and 2.2
§ In computer graphics, most images are linear

§ Lighting and material interact linearly

§ Gamma correction
§ Examples with γ = 2

§ Input a = 0 leads to final intensity I = 0, no correction
§ Input a = 1 leads to final intensity I = 1, no correction
§ Input a = 0.5 final intensity 0.25. Correct to 0.707107
§ Makes image “brighter” [brightens mid-tones]

 I = aγ

 a ' = a
1
γ

8

Gamma Correction
§ Can be messy for images. Usually gamma

on one monitor, but viewed on others…

§ For television, encode with gamma (often
0.45, decode with gamma 2.2)

§ CG, encode gamma is usually 1, correct

www.dfstudios.co.uk/wp-content/
uploads/2010/12/graph_gamcor.png

9

Finding Monitor Gamma

§ Adjust grey until match 0-1 checkerboard to find
mid-point a value i.e., a for I = 0.5

I = aγ

γ = log0.5
loga

10

Human Perception

§ Why not just make everything linear, avoid gamma

§ Ideally, 256 intensity values look linear

§ But human perception itself non-linear
§ Gamma between 1.5 and 3 depending on conditions
§ Gamma is (sometimes) a feature
§ Equally spaced input values are perceived roughly equal

11

Lecture Overview
§ Many basic things tying together course

§ Raster graphics

§ Gamma Correction

§ Color

§ Hardware pipeline and rasterization

§ Displaying Images: Ray Tracing and Rasterization
§ Essentially what this course is about (HW 2 and HW 4)

Some images from wikipedia

12

3

Color

§ Huge topic (can read textbooks)
§ Schrodinger much more work on this than quantum

§ For this course, RGB (red green blue), 3 primaries
§ Additive (not subtractive) mixing for arbitrary colors
§ Grayscale: 0.3 R + 0.6 G + 0.1 B
§ Secondary Colors (additive, not paints etc.)

§ Red + Green = Yellow, Red + Blue = Magenta,
Blue + Green = Cyan, R+G+B = White

§ Many other color spaces
§ HSV, CIE etc.

13

RGB Color

§ Venn, color cube

§ Not all colors possible

Images from wikipedia

14

Eyes as Sensors

Slides courtesy Prof. O’Brien
15

Cones (Trichromatic)

16

Cone Response

17

Color Matching Functions

18

4

CIE XYZ

19

Alpha Compositing

§ RGBA (32 bits including alpha transparency)
§ You mostly use 1 (opaque)
§ Can simulate sub-pixel coverage and effects

§ Compositing algebra

20

Lecture Overview
§ Many basic things tying together course

§ Raster graphics

§ Gamma Correction

§ Color

§ Hardware pipeline and rasterization

§ Displaying Images: Ray Tracing and Rasterization
§ Essentially what this course is about (HW 2 and HW 4)

Read chapter 8 more details

21

Hardware Pipeline

§ Application generates stream of vertices

§ Vertex shader called for each vertex
§ Output is transformed geometry

§ OpenGL rasterizes transformed vertices
§ Output are fragments

§ Fragment shader for each
fragment
§ Output is Framebuffer image

22

Rasterization

§ In modern OpenGL, really only OpenGL function
§ Almost everything is user-specified, programmable
§ Basically, how to draw (2D) primitive on screen

§ Long history
§ Bresenham line drawing
§ Polygon clipping
§ Antialiasing

§ What we care about
§ OpenGL generates a fragment for each pixel in triangle
§ Colors, values interpolated from vertices (Gouraud)

23

Z-Buffer

§ Sort fragments by depth
(only draw closest one)

§ New fragment replaces
old if depth test works

§ OpenGL does this auto
can override if you want

§ Must store z memory

§ Simple, easy to use

24

5

Lecture Overview
§ Many basic things tying together course

§ Raster graphics

§ Gamma Correction

§ Color

§ Hardware pipeline and rasterization

§ Displaying Images: Ray Tracing and Rasterization
§ Essentially what this course is about (HW 2 and HW 4)

25

What is the core of 3D pipeline?

§ For each object (triangle), for each pixel,
compute shading (do fragment program)

§ Rasterization (OpenGL) in HW 2
§ For each object (triangle)

§ For each pixel spanned by that triangle
§ Call fragment program

§ Ray Tracing in HW 4: flip loops
§ For each pixel

§ For each triangle
§ Compute shading (rough equivalent of fragment program)

§ HW 2, 4 take almost same input. Core of class

26

Ray Tracing vs Rasterization

§ Rasterization complexity is N * d
§ (N = objs, p = pix, d = pix/object)
§ Must touch each object (but culling possible)

§ Ray tracing naïve complexity is p * N
§ Much higher since p >> d
§ But acceleration structures allow p * log (N)
§ Must touch each pixel
§ Ray tracing can win if geometry very complex

§ Historically, OpenGL real-time, ray tracing slow
§ Now, real-time ray tracers, OpenRT, NVIDIA Optix
§ NVIDIA Turing RT (2018) claims 10 billion rays/second!!
§ Ray tracing has advantage for shadows, interreflections
§ Hybrid solutions now common
§ TuringRT 10G rays/sec: Video ; Tiger Demo: Video

27

Course Goals and Overview

§ Generate images from 3D graphics

§ Using both rasterization (OpenGL) and Raytracing
§ HW 2 (OpenGL), HW 4 (Ray Tracing)

§ Both require knowledge of transforms, viewing
§ HW 1

§ Need geometric model for rendering
§ Splines for modeling (HW 3)

28

