Outline of Unit

Computer Graphics

CSE 167 [Win 23], Lecture 10: Curves 2 Eiezr cuies (sl

Ravi Ramamoorthi deCasteljau algorithm, explicit, matrix (last time)

http://viscomp.ucsd.edu/classes/cse167/wi23 Polar form labeling (blossoms)
B-spline curves

Not well covered in textbooks (especially as taught
here). Main reference will be lecture notes. If you
do want a printed ref, handouts from CAGD, Seidel

Survey Feedback Idea of Blossoms/Polar Forms

(Optional) Labeling trick for control points and intermediate
deCasteljau points that makes thing intuitive

E.g. quadratic Bezier curve F(u)
Define auxiliary function f(us,uz) [number of args = degree]
Points on curve simply have ui=u, so that F(u) = f(u,u)
And we can label control points and deCasteljau points not
on curve with appropriate values of (us,u,)
(0,1)=(1,0)

f(0,0) = F(0) f(1,1) = F(1)

Idea of Blossoms/Polar Forms Geometric interpretation: Quadratic

Points on curve simply have ui=u, so that F(u) = f(u,u) 01=10
fis symmetric f(0,1) = f(1,0)

Only interpolate linearly between points with one arg different
f(0,u) = (1-u) f(0,0) + u f(0,1) Here, interpolate f(0,0) and f(0,1)=f(1,0)

£(0,1)=f(1,0)

(0,0 = F(0) f(1,1)=F(1) F(u) = f(uu) = (1-u)2 PO + 2u(1-u) P1 + u2 P2

Polar Forms: Cubic Bezier Curve

001 011

/ N\

(0[00] 11
000 001 011 111

N AN AN A

00u Olu llu

BN AN A

Ouu luu

N/

uuu

Why Polar Forms?

Simple mnemonic: which points to interpolate and
how in deCasteljau algorithm

Easy to see how to subdivide Bezier curve (next)
which is useful for drawing recursively

Generalizes to arbitrary spline curves (just label
control points correctly instead of 00 01 11 for Bezier)

Easy for many analyses (beyond scope of course)

Geometrically

0’21 011

Geometric Interpretation: Cubic

001 Out 011

Subdividing Bezier Curves

Drawing: Subdivide into halves (u = %2) Demo: hw3
Recursively draw each piece
At some tolerance, draw control polygon
Trivial for Bezier curves (from deCasteljau algorithm): hence
widely used for drawing

000 001 011 111
000 00u Ouu uuu uuu uul ull 111

Why specific labels/ control points on left/right?
How do they follow from deCasteljau?

Geometrically

0721 011

Subdivision in deCasteljau diagram
001 011

111

These (interior) points don’ t
appear in subdivided curves at all

Left part of Bezier curve ight part of Bezier curve
(uuu, 1uu, 11u, 111)

(000, 00u, Ouu, uuu) 0 1
Always left edge of L il Always right edge of
deCasteljau pyramid H\ /u deCasteljau pyramid

uuu

DeCasteljau: Recursive Subdivision

Input: Control points C; with 0 <4 < n where n is the degree.
Output: L;, R; for left and right control points in recursion.
1--) {
al control points
% & continue ; }

DeCasteljau (from last lecture) for midpoint

Followed by recursive calls using left, right parts

Bezier: Disadvantages

Single piece, no local control (move a control point,
whole curve changes) [Demo of HW 3]

Complex shapes: can be very high degree, difficult

In practice, combine many Bezier curve segments
But only position continuous at join since Bezier curves
interpolate end-points (which match at segment boundaries)
Unpleasant derivative (slope) discontinuities at end-points
Can you see why this is an issue?

Summary for HW 3 (with demo)

Bezier2 (Bezier discussed last time)

Given arbitrary degree Bezier curve, recursively
subdivide for some levels, then draw control polygon

Generate deCasteljau diagram; recursively call a routine
with left edge and right edge of this diagram

You are given some code structure; you essentially just
need to compute appropriate control points for left, right

Outline of Unit

Bezier curves (last time)
deCasteljau algorithm, explicit, matrix (last time)
Polar form labeling (blossoms)

B-spline curves

Not well covered in textbooks (especially as taught
here). Main reference will be lecture notes. If you
do want a printed ref, handouts from CAGD, Seidel

B-Splines
Cubic B-splines have C? continuity, local control

4 segments / control point, 4 control
points/segment

Knots where two segments join: Knotvector

Knotvector uniform/non-uniform (we only consider
uniform cubic B-splines, not general NURBS)

Knot: C? continuity Demo of HW 3

deéoor points

Polar Forms: Cubic Bspline Curve

Labeling little different from in Bezier curve
No interpolation of end-points like in Bezier

Advantage of polar forms: easy to generalize

-101 012

/\ Uniform knot vector:

-2,-1,0,1,2,3
Labels correspond to this

123

deCasteljau: Cubic B-Splines

- ing 10
Easy to generalize using ——
polar-form labels

Impossible remember 5"_4¢
without
-2-10

(1-u)/3

Explicit Formula (derive as exercise)

-1 3 31

F(11)=[113112111]M M:é 3 _,6 3

deCasteljau: Cubic B-Splines

Easy to generalize using —101
polar-form labels

Impossible remember 5”19
without

-2-10

deCasteljau: Cubic B-Splines

- ing 10
Easy to generalize using ——
polar-form labels

Impossible remember 5"_4¢ 123
without
210 123

%

1-u)3 . (2+U) g %

(1-u) { Y (+u)/31>u/3~,‘ /U3
-10u 1L 12u

(1-u)2 > (1+u)2" T~ ’

1-u/2 >

Summary of HW 3

BSpline Demo hw3

Arbitrary number of control points / segments
Do nothing till 4 control points (see demo)
Number of segments = # cpts — 3

Segment A will have control pts A,A+1,A+2,A+3

Evaluate Bspline for each segment using 4 control
points (at some number of locations, connect lines)

Use either deCasteljau algorithm (like Bezier) or
explicit form [matrix formula on previous slide]

Questions?

