
1

Computer Graphics

CSE 167 [Win 22], Lecture 18: Texture Mapping

Ravi Ramamoorthi

http://viscomp.ucsd.edu/classes/cse167/wi22

Many slides from Greg Humphreys, formerly UVA and
Rosalee Wolfe, DePaul tutorial teaching texture mapping visually
Chapter 11 in text book covers some portions

To Do

§  Submit HW4 milestone by tomorrow

§  Prepare for final push on HW 4

§  Written assignment due Mar 8, 4:59pm
§  Individually, no collaboration, piazza posts
§  Open notes, online. But understand what you turn in,

and try to use your own words
§  No final

Texture Mapping
§  Important topic: nearly all objects textured

§  Wood grain, faces, bricks and so on
§  Adds visual detail to scenes

§  Meant as a fun and practically useful lecture

Polygonal model With surface texture

Adding Visual Detail
§  Basic idea: use images instead of more

polygons to represent fine scale color variation

Parameterization

geometry

+ =

image texture map

•  Q: How do we decide where on the geometry
 each color from the image should go?

Option: Varieties of projections

[Paul Bourke]

2

Option: unfold the surface

[Piponi2000]

Option: make an atlas

[Sander2001]

charts atlas surface

Option: it’’s the artist’’s problem CAPE Evaluations

§  Fill out now, can be done on phone

§  Enthusiasm important to future offerings (new to
offer in winter this year, many enrollments in 167)

§  Comments useful to future years

§  Some key innovations: modern OpenGL, GLSL;
feedback servers (including code), UCSD Online, …

§  Separately, please also evaluate the TAs

Outline

§  Types of projections

§  Interpolating texture coordinates

§  Broader use of textures

How to map object to texture?

§  To each vertex (x,y,z in object coordinates),
must associate 2D texture coordinates (s,t)

§  So texture fits “nicely” over object

3

Idea: Use Map Shape

§  Map shapes correspond to various projections
§  Planar, Cylindrical, Spherical

§  First, map (square) texture to basic map shape

§  Then, map basic map shape to object
§  Or vice versa: Object to map shape, map shape to square

§  Usually, this is straightforward
§  Maps from square to cylinder, plane, sphere well defined
§  Maps from object to these are simply spherical, cylindrical,

cartesian coordinate systems

Planar mapping

§  Like projections, drop z coord (s,t) = (x,y)

§  Problems: what happens near z = 0?

Cylindrical Mapping

§  Cylinder: r, θ, z with (s,t) = (θ/(2π),z)
§  Note seams when wrapping around (θ = 0 or 2π)

Spherical Mapping

§  Convert to spherical coordinates: use latitude/long.
§  Singularities at north and south poles

Cube Mapping Cube Mapping

4

Outline

§  Types of projections

§  Interpolating texture coordinates

§  Broader use of textures

1st idea: Gouraud interp. of texcoords

Scan line

 I1

 I2

 I3

 y1

 y2

 y3

 ys
 Ia Ib

Ia =

I1(ys − y2)+ I2(y1 − ys)
y1 − y2

Ia =

I1(ys − y3)+ I3(y1 − ys)
y1 − y3

Ia =

Ia (xb − xp)+ Ib(xp − xa)
xb − xa

I p

Actual implementation efficient: difference
equations while scan converting

Artifacts

§  Wikipedia page https://en.wikipedia.org/wiki/
File:Perspective_correct_texture_mapping.jpg

§  What artifacts do you see?

§  Why?

§  Why not in standard Gouraud shading?

§  Hint: problem is in interpolating parameters

Interpolating Parameters

§  The problem turns out to be fundamental to
interpolating parameters in screen-space
§  Uniform steps in screen space ≠ uniform steps in world space

Texture Mapping

Linear interpolation
of texture coordinates

Correct interpolation
with perspective divide

Hill Figure 8.42

Interpolating Parameters

§  Perspective foreshortening is not getting applied to
our interpolated parameters
§  Parameters should be compressed with distance
§  Linearly interpolating them in screen-space doesn’t do this

5

Perspective-Correct Interpolation

§  Skipping a bit of math to make a long story short…
§  Rather than interpolating u and v directly, interpolate u/z

and v/z
§  These do interpolate correctly in screen space
§  Also need to interpolate z and multiply per-pixel

§  Problem: we don’t know z anymore
§  Solution: we do know w ~ 1/z
§  So…interpolate uw and vw and w, and compute

u = uw/w and v = vw/w for each pixel
§  This unfortunately involves a divide per pixel

§  Wikipedia page

Texture Map Filtering

§  Naive texture mapping aliases badly

§  Look familiar?
 int uval = (int) (u * denom + 0.5f);
 int vval = (int) (v * denom + 0.5f);
 int pix = texture.getPixel(uval, vval);

§  Actually, each pixel maps to a region in texture
§  |PIX| < |TEX|

§  Easy: interpolate (bilinear) between texel values
§  |PIX| > |TEX|

§  Hard: average the contribution from multiple texels
§  |PIX| ~ |TEX|

§  Still need interpolation!

Mip Maps

§  Keep textures prefiltered at multiple resolutions
§  For each pixel, linearly interpolate between

two closest levels (e.g., trilinear filtering)
§  Fast, easy for hardware

§  Why “Mip” maps?

MIP-map Example

§  No filtering:

§  MIP-map texturing:

AAAAAAAGH
MY EYES ARE BURNING

Where are my glasses?

Outline

§  Types of projections

§  Interpolating texture coordinates

§  Broader use of textures

Texture Mapping Applications

§  Modulation, light maps

§  Bump mapping

§  Displacement mapping

§  Illumination or Environment Mapping

§  Procedural texturing

§  And many more

6

Modulation textures

)))()(((),(SSTTL LL
n

SDAAE IKIKISRVKLNKIKItsTI ++•+•++= ∑

Map texture values to scale factor
W

oo
d

te
xt

ur
e

Texture
value

Bump Mapping

§  Texture = change in surface normal!

Sphere w/ diffuse texture Swirly bump map Sphere w/ diffuse texture
and swirly bump map

Displacement Mapping Illumination Maps
§  Quake introduced illumination maps or light

maps to capture lighting effects in video games
Texture map:

Texture map
+ light map:

Light map

Environment Maps

Images from Illumination and Reflection Maps:
 Simulated Objects in Simulated and Real Environments
Gene Miller and C. Robert Hoffman
SIGGRAPH 1984 “Advanced Computer Graphics Animation” Course Notes

Solid textures
Texture values indexed

by 3D location (x,y,z)
•  Expensive storage, or

•  Compute on the fly,
e.g. Perlin noise à

7

Procedural Texture Gallery

