
1

Computer Graphics

CSE 167 [Win 22], Lecture 15: Ray Tracing

Ravi Ramamoorthi

http://viscomp.ucsd.edu/classes/cse167/wi22

To Do
§  Midterm is graded. Mean/Median

§  If you did poorly, remember only one assignment

§  HW 3 due tomorrow Feb 23. Any questions?

§  HW 4 milestone due Mar 4, full homework Mar 15

§  START EARLY; FIND A PARTNER IF POSSIBLE

§  Likely hardest assignment you will have at UCSD
(but most rewarding). Some comments from edX:
§  The last assignment took me 50+ hours brutal but worth it
§  The final project (a ray tracer from scratch) was great; it’s

remarkable that the instructor ... students all the tools to
successfully complete it.

Effects needed for Realism

§  (Soft) Shadows

§  Reflections (Mirrors and Glossy)

§  Transparency (Water, Glass)

§  Interreflections (Color Bleeding)

§  Complex Illumination (Natural, Area Light)

§  Realistic Materials (Velvet, Paints, Glass)

§  And many more

Image courtesy Paul Heckbert 1983

Ray Tracing

§  Different Approach to Image Synthesis as
compared to Hardware pipeline (OpenGL)

§  Pixel by Pixel instead of Object by Object

§  Easy to compute shadows/transparency/etc

Outline
§  History

§  Basic Ray Casting (instead of rasterization)
§  Comparison to hardware scan conversion

§  Shadows / Reflections (core algorithm)

§  Ray-Surface Intersection

§  Optimizations

§  Current Research

2

Ray Tracing: History

§  Appel 68

§  Whitted 80 [recursive ray tracing]
§  Landmark in computer graphics

§  Lots of work on various geometric primitives

§  Lots of work on accelerations

§  Current Research
§  Real-Time raytracing (historically, slow technique)
§  Ray tracing architecture

Ray Tracing History

Ray Tracing History From SIGGRAPH 18

Real Photo: Instructor and Turner Whitted at SIGGRAPH 18

Outline in Code
Image Raytrace (Camera cam, Scene scene, int width, int height)
{

 Image image = new Image (width, height) ;

 for (int i = 0 ; i < height ; i++)

 for (int j = 0 ; j < width ; j++) {

 Ray ray = RayThruPixel (cam, i, j) ;

 Intersection hit = Intersect (ray, scene) ;

 image[i][j] = FindColor (hit) ;

 }

 return image ;

}

Outline

§  History

§  Basic Ray Casting (instead of rasterization)
§  Comparison to hardware scan conversion

§  Shadows / Reflections (core algorithm)

§  Ray-Surface Intersection

§  Optimizations

§  Current Research

3

Ray Casting

Produce same images as with OpenGL
§  Visibility per pixel instead of Z-buffer
§  Find nearest object by shooting rays into scene
§  Shade it as in standard OpenGL

Ray Casting

Virtual Viewpoint

Virtual Screen Objects

Ray misses all objects: Pixel colored black Ray intersects object: shade using color, lights, materials Multiple intersections: Use closest one (as does OpenGL)

Comparison to hardware scan-line

§  Per-pixel evaluation, per-pixel rays (not scan-convert
each object). On face of it, costly

§  But good for walkthroughs of extremely large models
(amortize preprocessing, low complexity)

§  More complex shading, lighting effects possible

Outline

§  History

§  Basic Ray Casting (instead of rasterization)
§  Comparison to hardware scan conversion

§  Shadows / Reflections (core algorithm)

§  Ray-Surface Intersection

§  Optimizations

§  Current Research

Shadows

Virtual Viewpoint

Virtual Screen Objects

Light Source

Shadow ray to light is unblocked: object visible Shadow ray to light is blocked: object in shadow

Shadows: Numerical Issues
•  Numerical inaccuracy may cause intersection to be
 below surface (effect exaggerated in figure)

•  Causing surface to incorrectly shadow itself
•  Move a little towards light before shooting shadow ray

4

Mirror Reflections/Refractions

Virtual Viewpoint

Virtual Screen Objects
Generate reflected ray in mirror direction,
Get reflections and refractions of objects

Recursive Ray Tracing

For each pixel
§  Trace Primary Eye Ray, find intersection

§  Trace Secondary Shadow Ray(s) to all light(s)
§  Color = Visible ? Illumination Model : 0 ;

§  Trace Reflected Ray
§  Color += reflectivity * Color of reflected ray

Problems with Recursion

§  Reflection rays may be traced forever

§  Generally, set maximum recursion depth

§  Same for transmitted rays (take refraction into
account)

Turner Whitted 1980

Effects needed for Realism
•  (Soft) Shadows
•  Reflections (Mirrors and Glossy)
•  Transparency (Water, Glass)
•  Interreflections (Color Bleeding)
•  Complex Illumination (Natural, Area Light)
•  Realistic Materials (Velvet, Paints, Glass)

Discussed in this lecture
Not discussed but possible with distribution ray tracing
Hard (but not impossible) with ray tracing; radiosity methods

Outline

§  History

§  Basic Ray Casting (instead of rasterization)
§  Comparison to hardware scan conversion

§  Shadows / Reflections (core algorithm)

§  Ray-Surface Intersection

§  Optimizations

§  Current Research

5

Ray/Object Intersections

§  Heart of Ray Tracer
§  One of the main initial research areas
§  Optimized routines for wide variety of primitives

§  Various types of info
§  Shadow rays: Intersection/No Intersection
§  Primary rays: Point of intersection, material, normals
§  Texture coordinates

§  Work out examples
§  Triangle, sphere, polygon, general implicit surface

Ray-Sphere Intersection

ray ≡

P =


P0 +


P1t

sphere ≡ (

P −

C) i (


P −

C)− r 2 = 0

C

P0

Ray-Sphere Intersection

ray ≡

P =


P0 +


P1t

sphere ≡ (

P −

C) i (


P −

C)− r 2 = 0

Substitute

ray ≡

P =


P0 +


P1t

sphere ≡ (

P0 +


P1t −


C) i (


P0 +


P1t −


C)− r 2 = 0

Simplify

 t
2(

P1 i

P1)+ 2t


P1 i (


P0 −


C)+ (


P0 −


C) i (


P0 −


C)− r 2 = 0

Ray-Sphere Intersection

 t
2(

P1 i

P1)+ 2t


P1 i (


P0 −


C)+ (


P0 −


C) i (


P0 −


C)− r 2 = 0

Solve quadratic equations for t

§  2 real positive roots: pick smaller root

§  Both roots same: tangent to sphere

§  One positive, one negative root: ray
origin inside sphere (pick + root)

§  Complex roots: no intersection (check
discriminant of equation first)

Ray-Sphere Intersection

§  Intersection point:

§  Normal (for sphere, this is same as coordinates
in sphere frame of reference, useful other tasks)

 ray ≡

P =


P0 +


P1t

normal =

P −

C


P −

C

Ray-Triangle Intersection

§  One approach: Ray-Plane intersection, then
check if inside triangle

§  Plane equation:
A

B

C

n = (C − A)× (B − A)

(C − A)× (B − A)

 plane ≡

P i

n −

A i

n = 0

6

Ray-Triangle Intersection

§  One approach: Ray-Plane intersection, then
check if inside triangle

§  Plane equation:

§  Combine with ray equation:

A
B

C

n = (C − A)× (B − A)

(C − A)× (B − A)

 plane ≡

P i

n −

A i

n = 0

ray ≡

P =


P0 +


P1t

(

P0 +


P1t) i


n =

A i

n

t =

A i

n −

P0 i

n

P1 i

n

Ray inside Triangle
§  Once intersect with plane, still need to find if in

triangle

§  Many possibilities for triangles, general polygons
(point in polygon tests)

§  We find parametrically [barycentric coordinates]. Also
useful for other applications (texture mapping)

A
B

C

P
α β

γ

P = αA+ βB + γC
α ≥ 0,β ≥ 0,γ ≥ 0
α + β + γ = 1

Ray inside Triangle

A
B

C

P
α β

γ

P = αA+ βB + γC
α ≥ 0,β ≥ 0,γ ≥ 0
α + β + γ = 1

 P − A = β(B − A)+ γ (C − A)

0 ≤ β ≤1 , 0 ≤ γ ≤1
β + γ ≤1

Other primitives

§  Much early work in ray tracing focused on ray-primitive
intersection tests

§  Cones, cylinders, ellipsoids

§  Boxes (especially useful for bounding boxes)

§  General planar polygons

§  Many more

§  Many references. For example, chapter in Glassner
introduction to ray tracing (see me if interested)

Ray-Tracing Transformed Objects

We have an optimized ray-sphere test
§  But we want to ray trace an ellipsoid…

Solution: Ellipsoid transforms sphere
§  Apply inverse transform to ray, use ray-sphere
§  Allows for instancing (traffic jam of cars)

Mathematical details worked out in class

Transformed Objects
§  Consider a general 4x4 transform M

§  Will need to implement matrix stacks like in OpenGL

§  Apply inverse transform M-1 to ray
§  Locations stored and transform in homogeneous

coordinates
§  Vectors (ray directions) have homogeneous coordinate

set to 0 [so there is no action because of translations]

§  Do standard ray-surface intersection as modified

§  Transform intersection back to actual coordinates
§  Intersection point p transforms as Mp
§  Distance to intersection if used may need recalculation
§  Normals n transform as M-tn. Do all this before lighting

7

Outline

§  History

§  Basic Ray Casting (instead of rasterization)
§  Comparison to hardware scan conversion

§  Shadows / Reflections (core algorithm)

§  Ray-Surface Intersection

§  Optimizations

§  Current Research

Acceleration

Testing each object for each ray is slow
§  Fewer Rays

Adaptive sampling, depth control
§  Generalized Rays

Beam tracing, cone tracing, pencil tracing etc.
§  Faster Intersections

§  Optimized Ray-Object Intersections
§  Fewer Intersections

We just discuss some approaches at high level; chapter 13 briefly covers

Acceleration Structures

Bounding boxes (possibly hierarchical)
 If no intersection bounding box, needn’t check objects

Bounding Box

Ray

Spatial Hierarchies (Oct-trees, kd trees, BSP trees)

Acceleration Structures: Grids

Acceleration and Regular Grids

§  Simplest acceleration, for example 5x5x5 grid

§  For each grid cell, store overlapping triangles

§  March ray along grid (need to be careful with
this), test against each triangle in grid cell

§  More sophisticated: kd-tree, oct-tree bsp-tree

§  Or use (hierarchical) bounding boxes

§  Try to implement some acceleration in HW 4

Outline

§  History

§  Basic Ray Casting (instead of rasterization)
§  Comparison to hardware scan conversion

§  Shadows / Reflections (core algorithm)

§  Ray-Surface Intersection

§  Optimizations

§  Current Research

8

Interactive Raytracing

§  Ray tracing historically slow

§  Now viable alternative for complex scenes
§  Key is sublinear complexity with acceleration;

need not process all triangles in scene

§  Allows many effects hard in hardware

§  NVIDIA OptiX ray-tracing API like OpenGL
§  Today: TuringRT 10G rays/second: Video

Raytracing on Graphics Hardware

§  Modern Programmable Hardware general
streaming architecture

§  Can map various elements of ray tracing

§  Kernels like eye rays, intersect etc.

§  In vertex or fragment programs

§  Convergence between hardware, ray tracing

[Purcell et al. 2002, 2003]

http://graphics.stanford.edu/papers/photongfx

