Computer Graphics

CSE 167 [Win 22], Lecture 15: Ray Tracing

Ravi Ramamoorthi

http://viscomp.ucsd.edu/classes/cse167/wi22

Effects needed for Realism

(Soft) Shadows

Reflections (Mirrors and Glossy)
Transparency (Water, Glass)
Interreflections (Color Bleeding)

Complex lllumination (Natural, Area Light)
Realistic Materials (Velvet, Paints, Glass)

And many more

Ray Tracing

Different Approach to Image Synthesis as
compared to Hardware pipeline (OpenGL)

Pixel by Pixel instead of Object by Object

Easy to compute shadows/transparency/etc

To Do

Midterm is graded. Mean/Median
If you did poorly, remember only one assignment

HW 3 due tomorrow Feb 23. Any questions?
HW 4 milestone due Mar 4, full homework Mar 15
START EARLY; FIND A PARTNER IF POSSIBLE

Likely hardest assignment you will have at UCSD

(but most rewarding). Some comments from edX:
The last assignment took me 50+ hours brutal but worth it
The final project (a ray tracer from scratch) was great; it's
remarkable that the instructor ... students all the tools to
successfully complete it.

Image courtesy Paul Heckbert 1983

Outline
History

Basic Ray Casting (instead of rasterization)
Comparison to hardware scan conversion

Shadows / Reflections (core algorithm)
Ray-Surface Intersection
Optimizations

Current Research

Image Raytrace (Camera cam, Scene scene, int width, int height)

{

Ray Tracing: History

Appel 68

Whitted 80 [recursive ray tracing]
Landmark in computer graphics

Lots of work on various geometric primitives
Lots of work on accelerations

Current Research
Real-Time raytracing (historically, slow technique)
Ray tracing architecture

Ray Tracing History

Ray Tracing in Computer Graphics

“An improved
lllumination model
for shaded display,”
T. Whitted,

CACM 1980

Resolution:
512 x 512
Time:
VAX 11/780 (1979)
74 min.
PC (2006)
6 sec. A

Spheres and Checkerboard, T. Whitted, 1979

CS$3488 Lecture 2 Pat Hanrahan, Spring 2009

Outline in Code

Image image = new Image (width, height) ;
for (inti=0;i< height; i++)
for (intj=0;j<width ; j++) {
Ray ray = RayThruPixel (cam, i, j) ;

Intersection hit = Intersect (ray, scene) ;

imageli][j] = FindColor (hit) ;
}

return image ;

Ray Tracing History

Ray Tracing in Computer Graphics

Appel 1968 - Ray casting

1. Generate an image by sending one ray per pixel

2. Check for shadows by sending a ray to the light
N

CS348B Lecture 2 Pat Hanrahan, Spring 2009

From SIGGRAPH 18

Real Photo: Instructor and Turner Whitted at SIGGRAPH 18

Outline

History

Basic Ray Casting (instead of rasterization)
Comparison to hardware scan conversion

Shadows / Reflections (core algorithm)
Ray-Surface Intersection
Optimizations

Current Research

Ray Casting

Produce same images as with OpenGL
Visibility per pixel instead of Z-buffer
Find nearest object by shooting rays into scene
Shade it as in standard OpenGL

Comparison to hardware scan-line

Per-pixel evaluation, per-pixel rays (not scan-convert
each object). On face of it, costly

But good for walkthroughs of extremely large models
(amortize preprocessing, low complexity)

More complex shading, lighting effects possible

Light Source

Virtual Viewpoint

Virtual Screen Objects
Shatiow g yddifiphisiattibeked: objectiizibhadow

Ray Casting

Virtual Viewpoint

Virtual Screen Objects

Outline

History

Basic Ray Casting (instead of rasterization)
Comparison to hardware scan conversion

Shadows / Reflections (core algorithm)
Ray-Surface Intersection
Optimizations

Current Research

Shadows: Numerical Issues

* Numerical inaccuracy may cause intersection to be
below surface (effect exaggerated in figure)

* Causing surface to incorrectly shadow itself
» Move a little towards light before shooting shadow ray

x

Mirror Reflections/Refractions Recursive Ray Tracing

For each pixel
Trace Primary Eye Ray, find intersection

Trace Secondary Shadow Ray(s) to all light(s)
Color = Visible ? lllumination Model : 0 ;

Trace Reflected Ray

Virtual Viewpoint
P Color += reflectivity * Color of reflected ray

Virtual Screen Objects
Generate reflected ray in mirror direction,
Get reflections and refractions of objects

Problems with Recursion

Reflection rays may be traced forever
Generally, set maximum recursion depth

Same for transmitted rays (take refraction into
account)

Turner Whitted 1980

Effects needed for Realism Outline

(Soft) Shadows
Reflections (Mirrors and Glossy) Basic Ray Casting (instead of rasterization)
Transparency (Water, Glass) Comparison to hardware scan conversion
Interreflections (Color Bleeding) Shadows / Reflections (core algorithm)
Complex lllumination (Natural, Area Light) Ray-Surface Intersection

Realistic Materials (Velvet, Paints, Glass)

History

Optimizations
Discussed in this lecture Current Research
Not discussed but possible with distribution ray tracing

Hard (but not impossible) with ray tracing; radiosity methods

Ray/Object Intersections

Heart of Ray Tracer
One of the main initial research areas
Optimized routines for wide variety of primitives

Various types of info
Shadow rays: Intersection/No Intersection
Primary rays: Point of intersection, material, normals
Texture coordinates

Work out examples
Triangle, sphere, polygon, general implicit surface

Ray-Sphere Intersection

ray =P=P+Pt
sphere=(P-C)+(P-C)-r?’=0
Substitute
ray =P=P+Pt
sphere = (P, +Pt-C)+(P,+Pt-C)-r*=0
Simplify

t2(P,+P)+2t P,+«(P,~C)+(P,~C)+(P,~C)-r*=0

1

Ray-Sphere Intersection

Intersection point: ray = P= .50 + I51t

Normal (for sphere, this is same as coordinates

in sphere frame of reference, useful other tasks)
p-C

normal = ——
P-C

Ray-Sphere Intersection

ray =P=P+Pt
sphere=(P-C)+(P-C)-r?=0

Ray-Sphere Intersection

t2(P+P)+2t P,+«(P,~C)+(P,~C)+(P,~C)-r*=0

Solve quadratic equations for t
2 real positive roots: pick smaller roo

Both roots same: tangent to sphere

One positive, one negative root: ray
origin inside sphere (pick + root)

Complex roots: no intersection (check

discriminant of equation first) /C)

Ray-Triangle Intersection

One approach: Ray-Plane intersection, then
check if inside triangle

Plane equation:

plane=P<fi—A+i=0

Ray-Triangle Intersection

One approach: Ray-Plane intersection, then
check if inside triangle 2

Plane equation:

plane=P+f—A«i=0
y equation:

Ray inside Triangle

P=aA+pB+yC
20,420,720
oa+pB+y=1

P—-A=pB(B-A)+y(C-A)
0<B<1,0<y<1
B+y <1

Ray-Tracing Transformed Objects

We have an optimized ray-sphere test
But we want to ray trace an ellipsoid...

Solution: Ellipsoid transforms sphere
Apply inverse transform to ray, use ray-sphere
Allows for instancing (traffic jam of cars)

Mathematical details worked out in class

Ray inside Triangle

Once intersect with plane, still need to find if in
triangle

Many possibilities for triangles, general polygons
(point in polygon tests)

We find parametrically [barycentric coordinates]. Also
useful for other applications (texture mapping)

B
P=aA+pB+yC

20,20,y 20
o+B+y=1

Other primitives
Much early work in ray tracing focused on ray-primitive
intersection tests
Cones, cylinders, ellipsoids
Boxes (especially useful for bounding boxes)
General planar polygons
Many more

Many references. For example, chapter in Glassner
introduction to ray tracing (see me if interested)

Transformed Objects

Consider a general 4x4 transform M
Will need to implement matrix stacks like in OpenGL

Apply inverse transform M- to ray
Locations stored and transform in homogeneous
coordinates
Vectors (ray directions) have homogeneous coordinate
set to 0 [so there is no action because of translations]

Do standard ray-surface intersection as modified

Transform intersection back to actual coordinates
Intersection point p transforms as Mp
Distance to intersection if used may need recalculation
Normals n transform as M-n. Do all this before lighting

Outline Acceleration

History Testing each object for each ray is slow

_ . . v Fewer Rays
Basic Ray Casting (instead of rasterization) Adaptive sampling, depth control

Comparison to hardware scan conversion Generalized Rays

. . Beam tracing, cone tracing, pencil tracing etc.
Shadows / Reflections (core algorithm) Faster Intersections

X Optimized Ray-Object Intersections
Ray-Surface Intersection T e
Optimizations

Current Research

We just discuss some approaches at high level; chapter 13 briefly covers

Acceleration Structures Acceleration Structures: Grids

Bounding boxes (possibly hierarchical)
If no intersection bounding box, needn’ t check objects

e

Spatial Hierarchies (Oct-trees, kd trees, BSP trees)

Acceleration and Regular Grids Outline

Simplest acceleration, for example 5x5x5 grid History
For each grid cell, store overlapping triangles Basic Ray Casting (instead of rasterization)

. . Comparison to hardware scan conversion
March ray along grid (need to be careful with

this), test against each triangle in grid cell Shadows / Reflections (core algorithm)
More sophisticated: kd-tree, oct-tree bsp-tree Ray-Surface Intersection
Or use (hierarchical) bounding boxes Optimizations

Current Research

Try to implement some acceleration in HW 4

Interactive Raytracing

Ray tracing historically slow

Now viable alternative for complex scenes
Key is sublinear complexity with acceleration;
need not process all triangles in scene

Allows many effects hard in hardware

NVIDIA OptiX ray-tracing API like OpenGL
Today: TuringRT 10G rays/second: Video

== Ring - Stencil Routing === Cornell Box - Bitonic Sort

Raytracing on Graphics Hardware

645 ® 512512,

Modern Programmable Hardware general { . o3 photots
streaming architecture ’

Can map various elements of ray tracing 550 5120384, 16k photons
Kernels “ke eye rays' intersect etc. Glass Ball - Stencil Routing Cornell Box - Increased Search Radius
In vertex or fragment programs : -—
Convergence between hardware, ray tracing
[Purcell et al. 2002, 2003]

http://graphics.stanford.edu/papers/photongfx

