Computer Graphics
CSE 167 [Win 22], Lecture 13: Raster Graphics, Color
Ravi Ramamoorthi

http://viscomp.ucsd.edu/classes/cse167/wi22

Images and Raster Graphics
Real world is continuous (almost)
How to represent images on a display?

Raster graphics: use a bitmap with discrete pixels

Raster scan CRT u
(paints image

line by line)

Cannot be resized without loss

Compare to vector graphics

Resized arbitrarily. For drawings R 90%
But how to represent photos, CG? o

Resolutions

Size of grid (1920x1200 = 2,304,000 pixels)
32 bit of memory for RGBA framebuffer 8+ MB

For printers, pixel density (300 dpi or ppi)
Printers often binary or CMYK, require finer grid
iPhone “retina display” > 300 dpi. At 12 inches,
pixels closer than retina’ s ability to distinguish angles

Digital cameras in Mega-Pixels (often > 10 MP)
Color filter array (Bayer Mosaic)
Pixels really small (micron)

Lecture Overview

Many basic things tying together course
Is part of the material, will be covered (briefly) on midterm

Raster graphics

Gamma Correction

Color

Hardware pipeline and rasterization

Displaying Images: Ray Tracing and Rasterization
Essentially what this course is about (HW 2 and HW 4)

Introduced now so could cover basics for HW 1,2,3
Some images from wikipedia

Displays and Raster Devices
CRT, flat panel, television (rect array of pixels)
Printers (scanning: no physical grid but print ink)
Digital cameras (grid light-sensitive pixels)
Scanner (linear array of pixels swept across)

Store image as 2D array (of RGB [sub-pixel] values)
In practice, there may be resolution mismatch, resize
Resize across platforms (phone, screen, large TV)

Vector image: description of shapes (line, circle, ...)
E.g., line art such as in Adobe lllustrator
Resolution-Independent but must rasterize to display
Doesn’ t work well for photographs, complex images

Monitor Intensities

Intensity usually stored with 8 bits [0...255]
HDR can be 16 bits or more [0...65535]
Resolution-independent use [0...1] intermediate

Monitor takes input value [0...1] outputs intensity
Non-zero intensity for 0, black level even when off
1.0 is maximum intensity (output 1.0/0.0 is contrast)
Non-linear response (as is human perception)
0.5 may map to 0.25 times the response of 1.0
Gamma characterization and gamma correction
Some history from CRT physics and exponential forms

Lecture Overview
Many basic things tying together course
Raster graphics
Gamma Correction
Color
Hardware pipeline and rasterization

Displaying Images: Ray Tracing and Rasterization
Essentially what this course is about (HW 2 and HW 4)

Some images from wikipedia

Gamma Correction

Can be messy for images. Usually gamma F
on one monitor, but viewed on others...

For television, encode with gamma (often
0.45, decode with gamma 2.2)

CG, encode gamma is usually 1, correct

www.dfstudios.co.uk/wp-content/
uploads/2010/12/graph_gamcor.png

Human Perception

Why not just make everything linear, avoid gamma
Ideally, 256 intensity values look linear

But human perception itself non-linear
Gamma between 1.5 and 3 depending on conditions
Gamma is (sometimes) a feature
Equally spaced input values are perceived roughly equal

Nonlinearity and Gamma

Exponential function [=a"
| is displayed intensity, a is pixel value
For many monitors y is between 1.8 and 2.2

In computer graphics, most images are linear
Lighting and material interact Iin1early

Gamma correction a'=a’

Examples with y =2
Input a = 0 leads to final intensity | = 0, no correction
Input a = 1 leads to final intensity | = 1, no correction
Input a = 0.5 final intensity 0.25. Correct to 0.707107
Makes image “brighter” [brightens mid-tones]

Finding Monitor Gamma

Adjust grey until match 0-1 checkerboard to find
mid-point a value i.e.,afor|=0.5 =g

_log0.5
loga

(=)

http//www.cs.cornell.edu/Courses/cs4620/2008fa/homeworks/gamma.htm

Lecture Overview
Many basic things tying together course
Raster graphics
Gamma Correction
Color
Hardware pipeline and rasterization

Displaying Images: Ray Tracing and Rasterization
Essentially what this course is about (HW 2 and HW 4)

Some images from wikipedia

Color

Huge topic (can read textbooks)
Schrodinger much more work on this than quantum

For this course, RGB (red green blue), 3 primaries

Additive (not subtractive) mixing for arbitrary colors
Grayscale:0.3R+06 G+0.1B

Secondary Colors (additive, not paints etc.)
Red + Green = Yellow, Red + Blue = Magenta,
Blue + Green = Cyan, R+G+B = White

Many other color spaces
HSV, CIE etc.

Eyes as Sensors

The human eye contains cells that sense light
* Rods

* No color (sort of)

« Spread over the retina
* More sensitive

Trmage fom Stephen Chemmey

+ Cones
« Three types of cones
« Each sensitive to different frequency distribution
+ Concentrated in fovea (center of the retina)
* Less sensitive

Slides courtesy Prof. O’ Brien

Cone Response
Response of a cone is given by a convolution integral :
L:/@()\)L(A)dk
M = / (A M(A\)dA

S = / BA)S(A)dA

continuous version of a dot product

Sensiivity

500 600
Wavelength (nm)

RGB Color

Venn, color cube

Not all colors possible

460
00 01 02 03 04 05 06 07 08
X

Images from wikipedia

Cones (Trichromatic)

- Each type of cone responds to different range of
frequencies/wavelengths

* Long, medium, short
+ Also called by color

* Red, green, blue

Normalized sensitivity curves

* Misleading:
“Red"” does not
mean your red
cones are firing...

Sensitivity

500 600
Wavelength (nm)

Color Matching Functions

Using Color Matching Functions

Given color matching functions in matrix form and new light
(A1) ... TOw) T

c={agn) . aw)|] 7
) e BOW))

#(M)
o .

45()"N)

amount of each primary necessary to match is given by C'®

CIE XYZ Alpha Compositing

Imaginary set of color primaries with positive values, X,Y, Z RGBA (32 bits including alpha transparency)
X2 it maenin i 5 b You mostly use 1 (opaque)

Can simulate sub-pixel coverage and effects
Compositing algebra
Opaque
AandB
Partially-
wancparent
AandB

Conceptual
sub-pixel

overlay

500 550 600
Wavelength (nrm)

Lecture Overview Hardware Pipeline

Many basic things tying together course generates stream of vertices

Raster graphics Vertex shader called for each vertex

Gamma Correction Output is transformed geometry

Color rasterizes transformed vertices
Output are fragments
Hardware pipeline and rasterization
Fragment shader for each
Displaying Images: Ray Tracing and Rasterization fragment
Essentially what this course is about (HW 2 and HW 4) Output is Framebuffer image

Read chapter 8 more details

Rasterization Z-Buffer

In modern OpenGL, really only OpenGL function Sort fragments by depth
Almost everything is user-specified, programmable (only draw closest one)
Basically, how to draw (2D) primitive on screen
New fragment replaces t

Long history , old if depth test works
Bresenham line drawing

Polygon clipping OpenGL does this auto

Antialiasing can override if you want
What we care about Must store z memory

OpenGL generates a fragment for each pixel in triangle)
Colors, values interpolated from vertices (Gouraud) Simple, easy to use

Z-buffer representation

Lecture Overview What is the core of 3D pipeline?

I LEE SIS I U U eI RIS For each object (triangle), for each pixel,

Raster graphics compute shading (do fragment program)

Gamma Correction Rasterization (OpenGL) in HW 2

For each object (triangle)
Color For each pixel spanned by that triangle
. . . . Call fragment program

Hardware pipeline and rasterization .. :

: : : - Ray Tracing in HW 4: flip loops
Displaying Images: Ray Tracing and Rasterization For each pixel

Essentially what this course is about (HW 2 and HW 4) For each triangle

Compute shading (rough equivalent of fragment program)

HW 2, 4 take almost same input. Core of class

Ray Tracing vs Rasterization Course Goals and Overview

Rasterization complexity is N * d Generate images from 3D graphics

(N = objs, p = pix, d = pix/object)

Must touch each object (but culling possible) Using both rasterization (OpenGL) and Raytracing
HW 2 (OpenGL), HW 4 (Ray Tracing)

Ray tracing naive complexity is p * N
Much higher since p >>d Both require knowledge of transforms, viewing
But acceleration structures allow p * log (N) HW 1
Must touch each pixel

Ray tracing can win if geometry very complex Need geometric model for rendering

Historically, OpenGL real-time, ray tracing slow Splines for modeling (HW 3)
Now, real-time ray tracers, OpenRT, NVIDIA Optix
NVIDIA Turing RT (2018) claims 10 billion rays/second!!
Ray tracing has advantage for shadows, interreflections
Hybrid solutions now common

