

Computer Graphics

CSE 167 [Win 22], Lecture 1: Overview and History

Ravi Ramamoorthi

<http://viscomp.ucsd.edu/classes/cse167/wi22>

Goals

- **Systems:** Write complex 3D graphics programs (real-time scene in OpenGL, offline raytracer)
- **Theory:** Mathematical aspects and algorithms underlying modern 3D graphics systems
- This course is **not** about the specifics of 3D graphics programs and APIs like Maya, Alias, DirectX but about the concepts underlying them.

Instructor

Ravi Ramamoorthi <http://www.cs.ucsd.edu/~ravir>

- PhD Stanford, 2002. PhD thesis developed “*Spherical Harmonic Lighting*” widely used in games (e.g. Halo series), movies (e.g. Avatar), etc. (Adobe, ...)
- At Columbia 2002-2008, UC Berkeley 2009-2014
- “*Monte Carlo denoising*” inspired raytracing offline, real-time
- At UCSD since Jul 2014: Director, [Center for Visual Computing](#)
- Awards for research: White House PECASE (2008), SIGGRAPH Significant New Researcher (2007), ACM Fellow
- <https://www.youtube.com/watch?v=qpyCXqXGe7I>
- Have taught Computer Graphics 10+ times
- Computer Graphics online MOOC (CSE 167x) has had 100,000+ registrations, 500,000 video views. Finalist for two inaugural edX Prizes. Will use UCSD Online, auto-feedback

MOOC Introductory Video

Course Staff

- Ravi Ramamoorthi
- Teaching Assistants:
 - Guowei Yang (g4yang@ucsd.edu)
 - Bing Xu (b4xu@ucsd.edu)
 - Kai-En Lin (k2lin@engr.ucsd.edu)

Why Study 3D Computer Graphics?

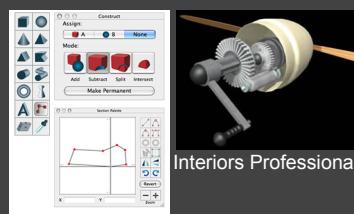
- Applications (discussed next)
- Fundamental Intellectual Challenges

Some content inspired by Pat Hanrahan from Stanford's CS148

Entertainment

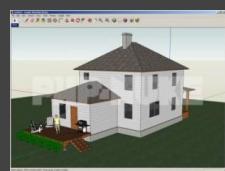
Movies: Brave, Pixar 2012

Entertainment



Games: Halo 3, Bungie 2007

Lighting Simulation



Computer Aided Design



Mechanical CAD
Architectural CAD
Electronics CAD
Casual Users

Google Sketchup

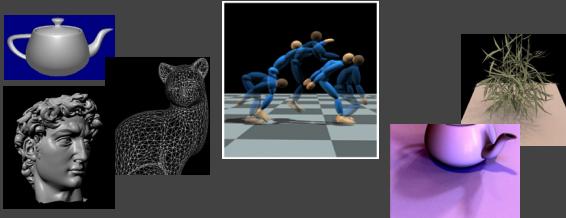
Visualization: Science and Medicine

Visible Human Project: University of Hamburg

Virtual Reality

- VR for design and entertainment
- Simulators: Surgical, Flight, Driving, Spacecraft

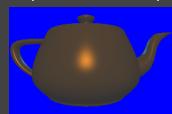
Digital Visual Media


- From text to images to video (to 3D?)
- Image and video processing and photography
- Multimedia computers, tablets, phones
- Flickr, YouTube, WebGL
- Real, Virtual Worlds (Google Earth, Metaverse)
- Electronic publishing
- Online gaming
- 3D printers and fabrication

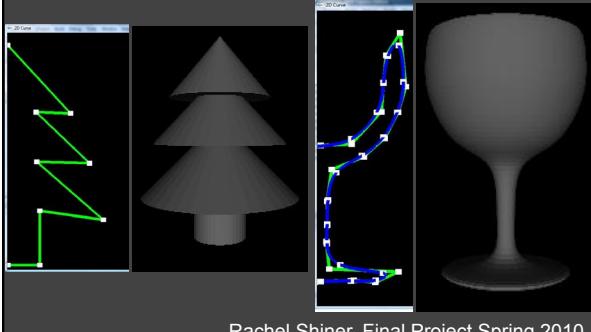
Why Study 3D Computer Graphics?

- Applications
- Fundamental Intellectual Challenges
 - Create and interact with realistic virtual world
 - Requires understanding of all aspects of physical world
 - New computing methods, displays, technologies
- Technical Challenges
 - Math of (perspective) projections, curves, surfaces
 - Physics of lighting and shading
 - 3D graphics software programming and hardware

3D Graphics Pipeline


Modeling → Animation → Rendering

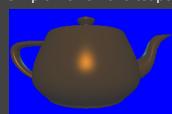
3D Graphics Pipeline


Modeling → Animation → Rendering

HW 1: Transformations (Jan 19)
Place objects in world, view them
Simple viewer for a teapot

HW 3: Curves (Feb 23)
Bezier and B-Spline curves
To model and draw objects

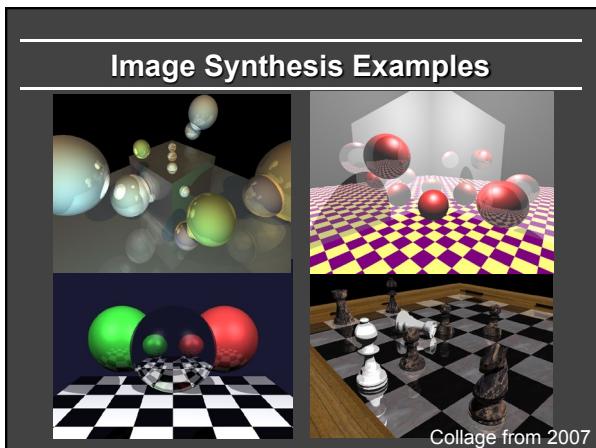
Curves for Modeling



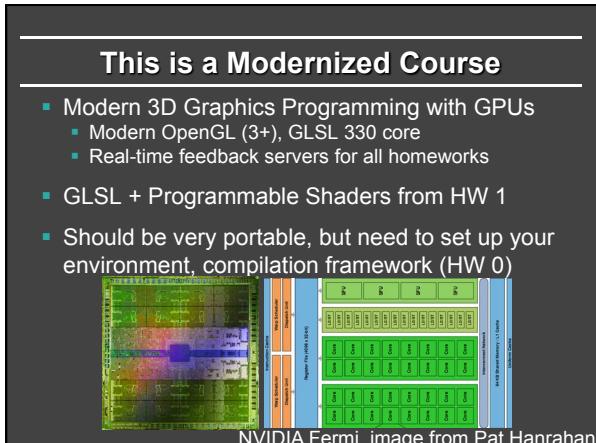
Rachel Shiner, Final Project Spring 2010

3D Graphics Pipeline

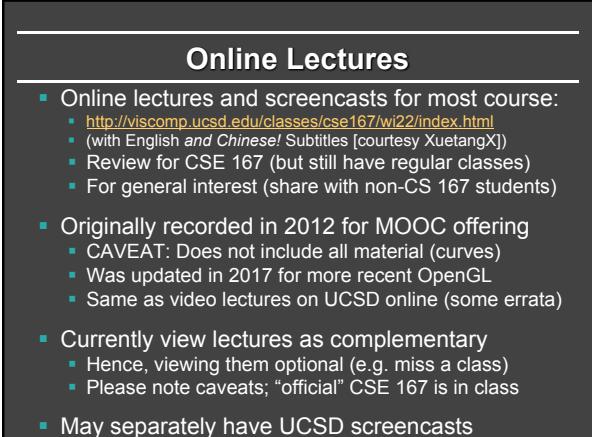
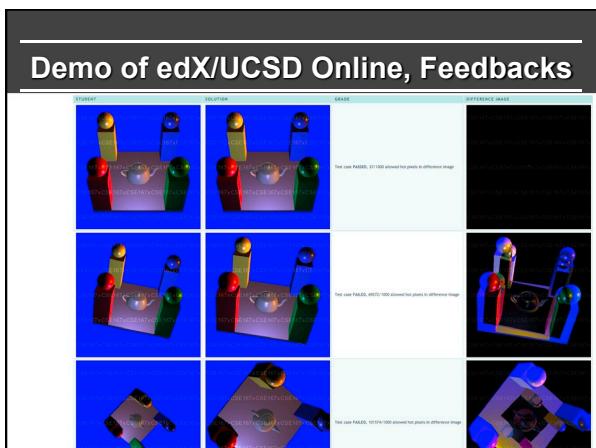
Modeling → Animation → Rendering


HW 1: Transformations (Jan 19)
Place objects in world, view them
Simple viewer for a teapot

HW 3: Curves (Feb 23)
Bezier and B-Spline curves
To model and draw objects


HW 2: Scene Viewer (Feb 9)
View scene, Lighting and Shading
(with GLSL programmable shaders)

HW 4: RayTracer (Mar 15)
Realistic images with ray tracing
(two basic approaches: rasterize
And raytrace images [HW 2,4])



Logistics

- Website <http://viscomp.ucsd.edu/classes/cse167/wi22> has most of the information (look at it carefully)
- We will be leveraging MOOC infrastructure in a SPOC*
 - Please sign up for account at UCSD online, join course: **DEMO**
 - UCSD online compulsory for most assignments, feedback systems
 - Optional for video lectures (class may differ a bit, more), problems
 - Must still submit "official" CSE 167 assignment (see website)*
 - Please do ask us if you are confused; we are here to help
 - No required texts; OpenGL programming guide, GLSL optional
- Office hours: Tu/Thu
 - See website for sections, TA office hours. **Sign up for sections!**
- Course newsgroup on Piazza
- Website for late, collaboration policy, etc
- Questions?

Innovation: Feedback Servers

- Feedback/Grading servers for all homeworks
- Submit images and/or code, compare to original
 - Program generates difference images, report url
 - Can get feedback multiple times; submit final url
 - All (except curves homework 3) run on UCSD Online
- “Feedback” not necessarily grading
 - Can run extra test cases, look at code, grade fairly
 - But use of feedback servers/edX edge is mandatory
- Will test out immediately with HW 0 images
 - HW 1 - 2 will have both code and image feedbacks
 - Can use any (laptop/desktop) computer. We also try to have the basement labs fully set up.

Workload

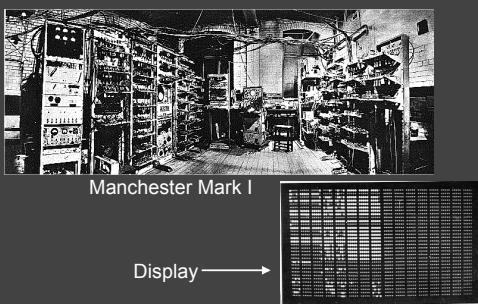
- Lots of fun, rewarding but may involve significant work
- 4 programming projects (+HW 0); almost all are time-consuming (individual except HW 4). START EARLY !!
- Course will involve understanding of mathematical, geometrical concepts taught (tested on midterm)
 - *No final; will do a take-home small assignment instead*
- Grade mostly programming, weights on website
 - Ignore weighting on edX site; we weight as on CSE 167 site
- Prerequisites: Solid C/C++/Java/Python programming background. Linear algebra (review on Thu) and general math skills. No knowledge of graphics/OpenGL needed.
 - Should be able to pick up C/C++, and look up some OpenGL
- Should be a difficult, but fun and rewarding course

CSE 167 is only a first step

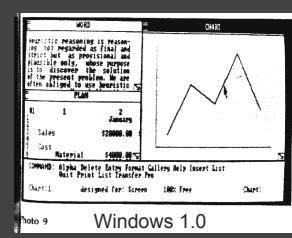
- *If you enjoy CSE 167 and do well:*
- In Spring: CSE 168 (Rendering continues; Li)
- Next winter: CSE 169 (Animation)
- Graduate: CSE 274 (Topics), many 291s, possibly 190

To Do

- Look at website
- Various policies for course. E-mail if confused.
- Sign up for UCSD Online, Piazza, etc.
- Skim assignments if you want. All are ready
- Assignment 0, Due Jan 12 next week (see website). [both parts needed, total 10 points]
- Set up compilation framework in HW 0, feedback
- Any questions?


History

- Brief history of significant developments in field
- End with a video showcasing graphics


The term Computer Graphics was coined by William Fetter of Boeing in 1960
First graphic system in mid 1950s USAF SAGE radar data (developed MIT)

How far we've come: TEXT

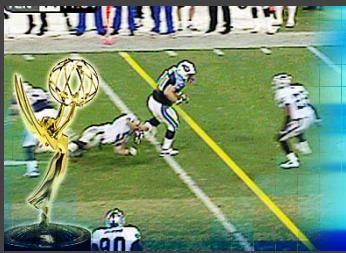
From Text to GUIs

- Invented at PARC circa 1975. Used in the Apple Macintosh, and now prevalent everywhere.

Drawing: Sketchpad (1963)

- Sketchpad (Sutherland, MIT 1963)
- First interactive graphics system ([VIDEO](#))
- Many of concepts for drawing in current systems
 - Pop up menus
 - Constraint-based drawing
 - Hierarchical Modeling

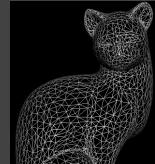
Paint Systems


- SuperPaint system: Richard Shoup, Alvy Ray Smith (PARC, 1973-79)

- Nowadays, image processing programs like Photoshop can draw, paint, edit, etc.

Image Processing

- Digitally alter images, crop, scale, composite
- Add or remove objects
- Sports broadcasts for TV (combine 2D and 3D processing)



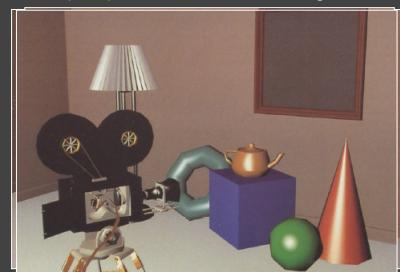
Modeling

- Spline curves, surfaces: 70^s – 80^s
- Utah teapot: Famous 3D model

- More recently: Triangle meshes often acquired from real objects

Rendering: 1960s (visibility)

- Roberts (1963), Appel (1967) - hidden-line algorithms
- Warnock (1969), Watkins (1970) - hidden-surface
- Sutherland (1974) - visibility = sorting

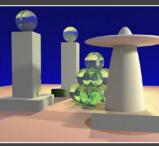
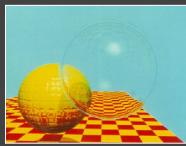


Images from FvDFH, Pixar's Shutterbug
Slide ideas for history of Rendering courtesy Marc Levoy

Rendering: 1970s (lighting)

1970s - raster graphics

- Gouraud (1971) - diffuse lighting, Phong (1974) - specular lighting
- Blinn (1974) - curved surfaces, texture
- Catmull (1974) - Z-buffer hidden-surface algorithm

Rendering (1980s, 90s: Global Illumination)

early 1980s - global illumination

- Whitted (1980) - ray tracing
- Goral, Torrance et al. (1984) radiosity
- Kajiya (1986) - the rendering equation

History of Computer Animation

- 10 min clip from video on history of animation
- <http://www.youtube.com/watch?v=LzZwiLUVaKg>
- Covers sketchpad, animation, basic modeling, rendering
- A synopsis of what this course is about
- (watch offline if short on time)