
1

Computer Graphics

CSE 167 [Win 19], Lecture 7: OpenGL Shading

Ravi Ramamoorthi

http://viscomp.ucsd.edu/classes/cse167/wi19

To Do

§  This week’s lectures have all info for HW 2

§  Start EARLY (milestone due Monday Feb 4)

Methodology for Lecture

§  Lecture deals with lighting (DEMO for HW 2)

§  Briefly explain shaders used for mytest3
§  Do this before explaining code fully so you can start HW 2
§  Primarily explain with reference to source code

§  More formal look at lighting and shading possible
§  Will be discussed in more detail if you take CSE 163

Demo for mytest3

§  Lighting on teapot

§  Blue, red highlights

§  Diffuse shading

§  Texture on floor

§  Update as we move

Importance of Lighting
§  Important to bring out 3D appearance (compare

teapot now to in previous demo)

§  Important for correct shading under lights

§  The way shading is done also important
§  Flat: Entire face has single color (normal) from one vertex
§  Gouraud or smooth: Colors at each vertex, interpolate

glShadeModel(GL_FLAT) [old] glShadeModel(GL_SMOOTH) [old]

Brief primer on Color
§  Red, Green, Blue primary colors

§  Can be thought of as vertices of a color cube
§  R+G = Yellow, B+G = Cyan, B+R = Magenta,

R+G+B = White
§  Each color channel (R,G,B) treated separately

§  RGBA 32 bit mode (8 bits per channel) often used
§  A is for alpha for transparency if you need it

§  Colors normalized to 0 to 1 range in OpenGL
§  Often represented as 0 to 255 in terms of pixel intensities

§  Also, color index mode (not so important)

2

Outline

§  Gouraud and Phong shading (vertex vs fragment)

§  Types of lighting, materials and shading
§  Lights: Point and Directional
§  Shading: Ambient, Diffuse, Emissive, Specular

§  Fragment shader for mytest3
§  HW 2 requires a more general version of this

§  Source code in display routine

Vertex vs Fragment Shaders
§  Can use vertex or fragment shaders for lighting
§  Vertex computations interpolated by rasterizing

§  Gouraud (smooth) shading, as in mytest1
§  Flat shading: no interpolation (single color of polygon)

§  Either compute colors at vertices, interpolate
§  This is standard in old-style OpenGL
§  Can be implemented with vertex shaders

§  Or interpolate normals etc. at vertices
§  And then shade at each pixel in fragment shader

§  Phong shading (different from Phong illumination)
§  More accurate

§  Wireframe: glPolygonMode (GL_FRONT, GL_LINE)
§  Also, polygon offsets to superimpose wireframe
§  Hidden line elimination? (polygons in black…)

Gouraud Shading – Details

Scan line

 I1

 I2

 I3

 y1

 y2

 y3

 ys Ia Ib

Ia =

I1(ys − y2)+ I2(y1 − ys)
y1 − y2

Ib =

I1(ys − y3)+ I3(y1 − ys)
y1 − y3

Ip =

Ia(xb − xp)+ Ib(xp − xa)
xb − xa

Ip

Actual implementation efficient: difference
equations while scan converting

Gouraud and Errors

§  I1 = 0 because (N dot E) is negative.

§  I2 = 0 because (N dot L) is negative.

§  Any interpolation of I1 and I2 will be 0.

I1 = 0 I2 = 0

area of
desired
highlight

Phong Illumination Model

§  Specular or glossy materials: highlights
§  Polished floors, glossy paint, whiteboards
§  For plastics highlight is color of light source (not object)
§  For metals, highlight depends on surface color

§  Really, (blurred) reflections of light source

Roughness

2 Phongs make a Highlight

§  Besides the Phong Illumination or Reflectance model, there
is a Phong Shading model.

§  Phong Shading: Instead of interpolating the intensities
between vertices, interpolate the normals.

§  The entire lighting calculation is performed for each pixel,
based on the interpolated normal. (Old OpenGL doesn’t do
this, but you can and will with current fragment shaders)

I1 = 0 I2 = 0

3

Examples and Color Plates

See OpenGL color plates (earlier eds) and glsl book

http://blog.cryos.net/categories/15-Avogadro/P3.html
http://blenderartists.org/forum/showthread.php?11430-Games-amp-Tutorials-(updated-Jan-5-2011)

Simple Vertex Shader in mytest3
#version 330 core // Do not use any version older than 330!

// Inputs

layout (location = 0) in vec3 position;

layout (location = 1) in vec3 normal;

layout (location = 2) in vec2 texCoords;

// Extra outputs, if any

out vec4 myvertex;

out vec3 mynormal;

out vec2 texcoord;

// Uniform variables

uniform mat4 projection;

uniform mat4 modelview;

uniform int istex ;

Simple Vertex Shader in mytest3

void main() {

 gl_Position = projection * modelview * vec4(position, 1.0f);

 mynormal = mat3(transpose(inverse(modelview))) * normal ;

 myvertex = modelview * vec4(position, 1.0f) ;

 texcoord = vec2 (0.0, 0.0); // Default value just to prevent errors

 if (istex != 0){

 texcoord = texCoords;

 }

}

Outline

§  Gouraud and Phong shading (vertex vs fragment)

§  Types of lighting, materials and shading
§  Lights: Point and Directional
§  Shading: Ambient, Diffuse, Emissive, Specular

§  Fragment shader for mytest3
§  HW 2 requires a more general version of this

§  Source code in display routine

Lighting and Shading

§  Rest of this lecture considers lighting

§  In real world, complex lighting, materials interact

§  We study this more formally in CSE 163

§  For now some basic approximations to capture
key effects in lighting and shading

§  Inspired by old OpenGL fixed function pipeline
§  But remember that’s not physically based

Types of Light Sources
§  Point

§  Position, Color
§  Attenuation (quadratic model)

§  Attenuation
§  Usually assume no attenuation (not physically correct)
§  Quadratic inverse square falloff for point sources
§  Linear falloff for line sources (tube lights). Why?
§  No falloff for distant (directional) sources. Why?

§  Directional (w=0, infinite far away, no attenuation)

§  Spotlights (not considered in homework)
§  Spot exponent
§  Spot cutoff

atten = 1

kc + kld + kqd
2

4

Material Properties

§  Need normals (to calculate how much diffuse,
specular, find reflected direction and so on)
§  Usually specify at each vertex, interpolate
§  GLUT used to do it automatically for teapots etc
(we provide meshes with normals instead for you in hw 2)
§  Can do manually for parametric surfaces
§  Average face normals for more complex shapes

§  Four terms: Ambient, Diffuse, Specular, Emissive

Emissive Term

 I = Emissionmaterial

Only relevant for light sources when looking directly at them
  Gotcha: must create geometry to actually see light
  Emission does not in itself affect other lighting calculations

Ambient Term

§  Hack to simulate multiple bounces, scattering of light

§  Assume light equally from all directions

§  Global constant

§  Never have
black pixels

 I = Ambient

Diffuse Term

§  Rough matte (technically Lambertian) surfaces

§  Light reflects equally in all directions

 I  N LN -L

Diffuse Term

§  Rough matte (technically Lambertian) surfaces

§  Light reflects equally in all directions

 I  N LN -L

I = intensitylight i

i=0

n

∑ * diffusematerial * atteni * [max (L i N,0)]

Specular Term

§  Glossy objects, specular reflections

§  Light reflects close to mirror direction

5

Phong Illumination Model

§  Specular or glossy materials: highlights
§  Polished floors, glossy paint, whiteboards
§  For plastics highlight is color of light source (not object)
§  For metals, highlight depends on surface color

§  Really, (blurred) reflections of light source

Roughness

Idea of Phong Illumination

§  Find a simple way to create highlights that are view-
dependent and happen at about the right place

§  Not physically based

§  Use dot product (cosine) of eye and reflection of
light direction about surface normal

§  Alternatively, dot product of half angle and normal
§  Has greater physical backing. We use this form

§  Raise cosine lobe to some power to control
sharpness or roughness

Phong Formula

-L
R

E

 I  (R i E)p

 R = ? R = −L + 2(L i N)N

Alternative: Half-Angle (Blinn-Phong)

§  Diffuse and specular components for most materials

H N
 I  (N i H)p

I = intensitylight i

i=0

n

∑ * specularmaterial * atteni * [max (N H,0)]shininess

Demo in mytest3

§  What happens when we make surface less shiny?

Outline

§  Gouraud and Phong shading (vertex vs fragment)

§  Types of lighting, materials and shading
§  Lights: Point and Directional
§  Shading: Ambient, Diffuse, Emissive, Specular

§  Fragment shader for mytest3
§  HW 2 requires a more general version of this

§  Source code in display routine

6

Fragment Shader Setup
#version 330 core // Do not use any version older than 330!

// Inputs fragment shader are outputs of same name of vertex shader

in vec4 myvertex;

in vec3 mynormal;

in vec2 texcoord;

// Output the frag color

out vec4 fragColor;

uniform sampler2D tex ;

uniform int istex ;

uniform int islight ; // are we lighting.

uniform vec3 color;

Fragment Shader Variables
// Assume light 0 is directional, light 1 is a point light.

// Actual light values are passed from the main OpenGL program.

// This could be fancier. My goal is to illustrate a simple idea.

uniform vec3 light0dirn ;

uniform vec4 light0color ;

uniform vec4 light1posn ;

uniform vec4 light1color ;

// Now, set the material parameters. These could be bound to

// a buffer. But for now, I'll just make them uniform.

// I use ambient, diffuse, specular, shininess.

// Ambient is just additive and doesn't multiply the lights.

uniform vec4 ambient ;

uniform vec4 diffuse ;

uniform vec4 specular ;

uniform float shininess ;

Fragment Shader Compute Lighting
vec4 ComputeLight (const in vec3 direction, const in vec4

lightcolor, const in vec3 normal, const in vec3 halfvec, const
in vec4 mydiffuse, const in vec4 myspecular, const in float
myshininess) {

 float nDotL = dot(normal, direction) ;

 vec4 lambert = mydiffuse * lightcolor * max (nDotL, 0.0) ;

 float nDotH = dot(normal, halfvec) ;

 vec4 phong = myspecular * lightcolor * pow (max(nDotH,
0.0), myshininess) ;

 vec4 retval = lambert + phong ;

 return retval ;

}

Fragment Shader Main Transforms
void main (void)

{

 if (istex > 0) fragColor = texture(tex, texcoord);

 else if (islight == 0) fragColor = vec4(color, 1.0f) ;

 else {

 // They eye is always at (0,0,0) looking down -z axis

 // Also compute current fragment position, direction to eye

 const vec3 eyepos = vec3(0,0,0) ;

 vec3 mypos = myvertex.xyz / myvertex.w ; // Dehomogenize

 vec3 eyedirn = normalize(eyepos - mypos) ;

 // Compute normal, needed for shading.

 vec3 normal = normalize(mynormal) ;

Fragment Shader Main Routine
 // Light 0, directional

 vec3 direction0 = normalize (light0dirn) ;

 vec3 half0 = normalize (direction0 + eyedirn) ;

 vec4 col0 = ComputeLight(direction0, light0color, normal,
half0, diffuse, specular, shininess) ;

 // Light 1, point

 vec3 position = light1posn.xyz / light1posn.w ;

 vec3 direction1 = normalize (position - mypos) ;

 // no attenuation

 vec3 half1 = normalize (direction1 + eyedirn) ;

 vec4 col1 = ComputeLight(direction1, light1color, normal,
half1, diffuse, specular, shininess) ;

 fragColor = ambient + col0 + col1 ;

 }

}

Outline

§  Gouraud and Phong shading (vertex vs fragment)

§  Types of lighting, materials and shading
§  Lights: Point and Directional
§  Shading: Ambient, Diffuse, Emissive, Specular

§  Fragment shader for mytest3
§  HW 2 requires a more general version of this

§  Source code in display routine

7

Light Set Up (in display)
 /* New for Demo 3; add lighting effects */

 {

 const GLfloat one[] = {1,1,1,1} ;

 const GLfloat medium[] = {0.5f, 0.5f, 0.5f, 1};

 const GLfloat small[] = {0.2f, 0.2f, 0.2f, 1};

 const GLfloat high[] = {100} ;

 const GLfloat zero[] = {0.0, 0.0, 0.0, 1.0} ;

 const GLfloat light_specular[] = {1, 0.5, 0, 1};

 const GLfloat light_specular1[] = {0, 0.5, 1, 1};

 const GLfloat light_direction[] = {0.5, 0, 0, 0}; // Dir lt

 const GLfloat light_position1[] = {0, -0.5, 0, 1};

 GLfloat light0[4], light1[4] ;

 // Set Light and Material properties for the teapot

 // Lights are transformed by current modelview matrix.

 // The shader can't do this globally. So we do so manually.

 transformvec(light_direction, light0) ;

 transformvec(light_position1, light1) ;

Moving a Light Source

§  Lights transform like other geometry

§  Only modelview matrix (not projection). The only real
application where the distinction is important

§  Types of light motion
§  Stationary: set the transforms to identity before specifying it

§  Moving light: Push Matrix, move light, Pop Matrix

§  Moving light source with viewpoint (attached to camera). Can
simply set light to 0 0 0 so origin wrt eye coords (make
modelview matrix identity before doing this)

Modelview Light Transform

/* New helper transformation function to transform vector by
modelview */

void transformvec (const GLfloat input[4], GLfloat output[4])
{

 glm::vec4 inputvec(input[0], input[1], input[2], input[3]);

 glm::vec4 outputvec = modelview * inputvec;

 output[0] = outputvec[0];

 output[1] = outputvec[1];

 output[2] = outputvec[2];

 output[3] = outputvec[3];

}

Set up Lighting for Teapot
 glUniform3fv(light0dirn, 1, light0) ;

 glUniform4fv(light0color, 1, light_specular) ;

 glUniform4fv(light1posn, 1, light1) ;

 glUniform4fv(light1color, 1, light_specular1) ;

 // glUniform4fv(light1color, 1, zero) ;

 glUniform4fv(ambient,1,small) ;

 glUniform4fv(diffuse,1,medium) ;

 glUniform4fv(specular,1,one) ;

 glUniform1fv(shininess,1,high) ;

 // Enable and Disable everything around the teapot

 // Generally, we would also need to define normals etc.

 // But the teapot object file already defines these for us.

 if (DEMO > 4)

 glUniform1i(islight,lighting) ; // lighting only teapot.

Shader Mappings in init

 vertexshader = initshaders(GL_VERTEX_SHADER, "shaders/light.vert") ;

 fragmentshader = initshaders(GL_FRAGMENT_SHADER, "shaders/light.frag") ;

 shaderprogram = initprogram(vertexshader, fragmentshader) ;

 // * NEW * Set up the shader parameter mappings properly for lighting.

 islight = glGetUniformLocation(shaderprogram,"islight") ;

 light0dirn = glGetUniformLocation(shaderprogram,"light0dirn") ;

 light0color = glGetUniformLocation(shaderprogram,"light0color") ;

 light1posn = glGetUniformLocation(shaderprogram,"light1posn") ;

 light1color = glGetUniformLocation(shaderprogram,"light1color") ;

 ambient = glGetUniformLocation(shaderprogram,"ambient") ;

 diffuse = glGetUniformLocation(shaderprogram,"diffuse") ;

 specular = glGetUniformLocation(shaderprogram,"specular") ;

 shininess = glGetUniformLocation(shaderprogram,"shininess") ;

