
1

Computer Graphics

CSE 167 [Win 19], Lecture 19: High Quality Rendering

Ravi Ramamoorthi

http://viscomp.ucsd.edu/classes/cse167/wi19

Summary
§  This is the final lecture of CSE 167. (CAPE+TA)

§  Good luck on HW 4, written assignment

§  Please consider CSE 190 (VR), 291
(Computational Photography) in spring

Monte Carlo Path Tracing
§  General solution to rendering and global illumination

§  Suitable for a variety of general scenes

§  Based on Monte Carlo methods

§  Enumerate all paths of light transport

§  Long history, traces back to rendering eqn Kajiya 86

§  (More advanced topic: Slides from CSE 274)

§  Increasingly, basis for production rendering

§  Path tracing today real-time in hardware (for
example, using NVIDIA’s Optix, Turing RTX)

Monte Carlo Path Tracing

Big diffuse light source, 20 minutes

Jensen

Monte Carlo Path Tracing

1000 paths/pixel

Jensen

Monte Carlo Path Tracing

Advantages
§  Any type of geometry (procedural, curved, ...)
§  Any type of BRDF or reflectance (specular, glossy, diffuse, ...)
§  Samples all types of paths (L(SD)*E)
§  Accuracy controlled at pixel level
§  Low memory consumption
§  Unbiased - error appears as noise in final image

Disadvantages (standard Monte Carlo problems)
§  Slow convergence (square root of number of samples)
§  Noise in final image

2

Monte Carlo Path Tracing

 Integrate radiance
for each pixel
by sampling paths
randomly

Diffuse Surface

Eye

Light

x

Specular
Surface

Pixel

Lo(x,


w) = Le(x,


w)+ fr (x,

Ω
∫


′w ,

w)Li(x,


′w)(

′w

n)d

w

Simplest Monte Carlo Path Tracer
For each pixel, cast n samples and average

§  Choose a ray with p=camera, d=(θ,ϕ) within pixel
§  Pixel color += (1/n) * TracePath(p, d)

TracePath(p, d) returns (r,g,b) [and calls itself recursively]:

§  Trace ray (p, d) to find nearest intersection p’
§  Select with probability (say) 50%:

§  Emitted:
 return 2 * (Lered, Legreen, Leblue) // 2 = 1/(50%)

§  Reflected:
 generate ray in random direction d’
 return 2 * fr(d èd’) * (n�d’) * TracePath(p’, d’)

Simplest Monte Carlo Path Tracer
For each pixel, cast n samples and average over paths

§  Choose a ray with p=camera, d=(θ,ϕ) within pixel
§  Pixel color += (1/n) * TracePath(p, d)

TracePath(p, d) returns (r,g,b) [and calls itself recursively]:

§  Trace ray (p, d) to find nearest intersection p’
§  Select with probability (say) 50%:

§  Emitted:
 return 2 * (Lered, Legreen, Leblue) // 2 = 1/(50%)

§  Reflected:
 generate ray in random direction d’
 return 2 * fr(d èd’) * (n�d’) * TracePath(p’, d’)

Simplest Monte Carlo Path Tracer
For each pixel, cast n samples and average

§  Choose a ray with p=camera, d=(θ,ϕ) within pixel
§  Pixel color += (1/n) * TracePath(p, d)

TracePath(p, d) returns (r,g,b) [and calls itself recursively]:

§  Trace ray (p, d) to find nearest intersection p’
§  Select with probability (say) 50%:

§  Emitted:
 return 2 * (Lered, Legreen, Leblue) // 2 = 1/(50%)

§  Reflected:
 generate ray in random direction d’
 return 2 * fr(d èd’) * (n�d’) * TracePath(p’, d’)

Weight = 1/probability
Remember: unbiased
requires having f(x) / p(x)

Simplest Monte Carlo Path Tracer
For each pixel, cast n samples and average

§  Choose a ray with p=camera, d=(θ,ϕ) within pixel
§  Pixel color += (1/n) * TracePath(p, d)

TracePath(p, d) returns (r,g,b) [and calls itself recursively]:

§  Trace ray (p, d) to find nearest intersection p’
§  Select with probability (say) 50%:

§  Emitted:
 return 2 * (Lered, Legreen, Leblue) // 2 = 1/(50%)

§  Reflected:
 generate ray in random direction d’
 return 2 * fr(d èd’) * (n�d’) * TracePath(p’, d’)

Path terminated when
Emission evaluated

3

Arnold Renderer (M. Fajardo)
§  Works well diffuse surfaces, hemispherical light

From UCB CS 294 a few years ago

Daniel Ritchie and Lita Cho

Importance Sampling
§  Pick paths based on energy or expected contribution

§  More samples for high-energy paths
§  Don’t pick low-energy paths

§  At “macro” level, use to select between reflected vs
emitted, or in casting more rays toward light sources

§  At “micro” level, importance sample the BRDF to pick
ray directions

§  Tons of papers in 90s on tricks to reduce variance in
Monte Carlo rendering

§  Importance sampling now standard in production. I
consulted on Pixar’s system for movies from 2012+

Importance Sampling

 Can pick paths however we want, but
contribution weighted by 1/probability
§  Already seen this division of 1/prob in weights to

emission, reflectance

f (x)dx
Ω
∫ = 1

N
Yi

i=1

N

∑

Yi =
f (xi)
p(xi)

x1 xN

 E(f(x))

Importance sample Emit vs Reflect

TracePath(p, d) returns (r,g,b) [and calls itself recursively]:
§  Trace ray (p, d) to find nearest intersection p’
§  If Le = (0,0,0) then pemit= 0 else pemit= 0.9 (say)
§  If random() < pemit then:

§  Emitted:
 return (1/ pemit) * (Lered, Legreen, Leblue)

§  Else Reflected:
 generate ray in random direction d’
 return (1/(1- pemit)) * fr(d èd’) * (n�d’) * TracePath(p’, d’)

More variance reduction

§  Discussed “macro” importance sampling
§  Emitted vs reflected

§  How about “micro” importance sampling
§  Shoot rays towards light sources in scene
§  Distribute rays according to BRDF

4

Monte Carlo Extensions

Unbiased
§  Bidirectional path tracing
§  Metropolis light transport

Biased, but consistent
§  Noise filtering
§  Adaptive sampling
§  Irradiance caching

Monte Carlo Extensions

Unbiased
§  Bidirectional path tracing
§  Metropolis light transport

Biased, but consistent
§  Noise filtering
§  Adaptive sampling
§  Irradiance caching

RenderPark

Monte Carlo Extensions

Unbiased
§  Bidirectional path tracing
§  Metropolis light transport

Biased, but consistent
§  Noise filtering
§  Adaptive sampling
§  Irradiance caching

Heinrich

Monte Carlo Extensions

Unbiased
§  Bidirectional path tracing
§  Metropolis light transport

Biased, but consistent
§  Noise filtering
§  Adaptive sampling
§  Irradiance caching

Unfiltered

Filtered Jensen

Monte Carlo Extensions

Unbiased
§  Bidirectional path tracing
§  Metropolis light transport

Biased, but consistent
§  Noise filtering
§  Adaptive sampling
§  Irradiance caching

Adaptive

Fixed

Ohbuchi

5

Monte Carlo Extensions

Unbiased
§  Bidirectional path tracing
§  Metropolis light transport

Biased, but consistent
§  Noise filtering
§  Adaptive sampling
§  Irradiance caching

Jensen

Summary
§  Monte Carlo methods robust and simple (at least

until nitty gritty details) for global illumination

§  Must handle many variance reduction methods in
practice

§  Importance sampling, Bidirectional path tracing,
Russian roulette etc.

§  Rich field with many papers, systems researched
over last 30 years

§  Today, hardware for real-time ray, path tracing

§  Promising physically-based GPU approach

Smoothness of Indirect Lighting

Direct Indirect

Direct + Indirect

Irradiance Caching

§  Empirically, (diffuse) interreflections low frequency

§  Therefore, should be able to sample sparsely

§  Irradiance caching samples irradiance at few points
on surfaces, and then interpolates

§  Ward, Rubinstein, Clear. SIGGRAPH 88,
A ray tracing solution for diffuse interreflection

Irradiance Caching Example
Final Image

Sample Locations

D. Mitchell 95, Consequences of stratified sampling in graphics

6

Comparison of simple patterns

Ground Truth Uniform Random Stratified

Latin Hypercube Quasi Monte Carlo

16 samples for area light, 4 samples per pixel, total 64 samples

Figures courtesy Tianyu Liu

If interested, see my recent paper “A Theory of Monte Carlo Visibility Sampling”

§  Step 1. Choose a light ray
§  Step 2. Find ray-surface intersection
§  Step 3. Reflect or transmit

u = Uniform()
if u < reflectance(x)
 Choose new direction d ~ BRDF(O|I)
goto Step 2

§  else if u < reflectance(x)+transmittance(x)
 Choose new direction d ~ BTDF(O|I)
goto Step 2

§  else // absorption=1–reflectance-transmittance
 terminate on surface; deposit energy

Path Tracing: From Lights

Bidirectional Path Tracing
Path pyramid (k = l + e = total number of bounces)

Comparison

Why Photon Map?
§  Some visual effects like caustics hard with standard path

tracing from eye

§  May usually miss light source altogether

§  Instead, store “photons” from light in kd-tree

§  Look-up into this as needed

§  Combines tracing from light source, and eye

§  Similar to bidirectional path tracing, but compute photon
map only once for all eye rays

§  Global Illumination using Photon Maps H. Jensen.
Rendering Techniques (EGSR 1996), pp 21-30. (Also
book: Realistic Image Synthesis using Photon Mapping)

Caustics

Slides courtesy Henrik Wann Jensen

Path Tracing: 1000 paths/pixel
Note noise in caustics

7

Caustics
Photon Mapping: 10000 photons
50 photons in radiance estimate

Reflections Inside a Metal Ring
50000 photons
50 photons to estimate radiance

Caustics on Glossy Surfaces

340000 photons, 100 photons in radiance estimate

HDR Environment Illumination

Global Illumination Direct Illumination

8

Specular Reflection Caustics

Indirect Illumination Mies House: Swimming Pool

