Effects needed for Realism

Computer Graphics (Soft) Shadows

CSE 167 [Win 19], Lecture 15: Ray Tracing Reflections (Mirrors and Glossy)
Ravi Ramamoorthi Transparency (Water, Glass)

. : Interreflections (Color Bleeding)
http://viscomp.ucsd.edu/classes/cse167/wi19

Complex lllumination (Natural, Area Light)
Realistic Materials (Velvet, Paints, Glass)

And many more

Ray Tracing

Different Approach to Image Synthesis as
compared to Hardware pipeline (OpenGL)

Pixel by Pixel instead of Object by Object

Easy to compute shadows/transparency/etc

Image courtesy Paul Heckbert 1983

Outline Ray Tracing: History

History Appel 68

Basic Ray Casting (instead of rasterization) Whitted 80 [recursive ray tracing]
Comparison to hardware scan conversion Landmark in computer graphics

Shadows / Reflections (core algorithm) Lots of work on various geometric primitives

: Lots of work on accelerations

Ray-Surface Intersection W :
R Current Research

Optlmlzatlons Real-Time raytracing (historically, slow technique)

Ray tracing architecture
Current Research




Ray Tracing History Ray Tracing History

Ray Tracing in Computer Graphics Ray Tracing in Computer Graphics

Appel 1968 - Ray casting “An improved
Illlumination model
for shaded display,”
2. Check for shadows by sending a ray to the light T. Whitted,

\ . CACM 1980

1. Generate an image by sending one ray per pixel

Resolution:
512 x 512
Time:
VAX 11/780 (1979)
74 min.
PC (2006)
6 sec. s
Spheres and Checkerboard, T. Whitted, 1979

€93488 Locture 2 Pat Haneahan, Spring 2009

From SIGGRAPH 18 Outline in Code

Image Raytrace (Camera cam, Scene scene, int width, int height)
{
Image image = new Image (width, height) ;
for (inti=0 ;i< height; i++)
for (intj = 0;j < width ; j++) {
Ray ray = RayThruPixel (cam, i, j) ;
Intersection hit = Intersect (ray, scene) ;
imageli][j] = FindColor (hit) ;
}

return image ;

Real Photo: Instructor and Turner Whitted at SIGGRAPH 18

Outline Ray Casting

History Produce same images as with OpenGL
Visibility per pixel instead of Z-buffer

Basic Ray Casting (instead of rasterization) Find nearest object by shooting rays into scene
Comparison to hardware scan conversion Shade it as in standard OpenGL

Shadows / Reflections (core algorithm)

Ray-Surface Intersection

Optimizations

Current Research




Ray Casting Comparison to hardware scan-line

Per-pixel evaluation, per-pixel rays (not scan-convert
each object). On face of it, costly

But good for walkthroughs of extremely large models
(amortize preprocessing, low complexity)
Virtual Viewpoint

More complex shading, lighting effects possible

Virtual Screen Objects

Outline Shadows Light Source

History

Basic Ray Casting (instead of rasterization)
Comparison to hardware scan conversion

Shadows / Reflections (core algorithm)
Ray-Surface Intersection Virtual Viewpoint
Optimizations
Current Research
Virtual Screen Objects
Shatiowzgyddifiphisiattibeked: objectiizibhadow

Shadows: Numerical Issues Mirror Reflections/Refractions

* Numerical inaccuracy may cause intersection to be
below surface (effect exaggerated in figure)

* Causing surface to incorrectly shadow itself

» Move a little towards light before shooting shadow ray

X

Virtual Viewpoint

Virtual Screen Objects
Generate reflected ray in mirror direction,
Get reflections and refractions of objects




Recursive Ray Tracing

For each pixel
Trace Primary Eye Ray, find intersection

Trace Secondary Shadow Ray(s) to all light(s)
Color = Visible ? lllumination Model : 0 ;

Trace Reflected Ray
Color += reflectivity * Color of reflected ray

Turner Whitted 1980

Outline

History

Basic Ray Casting (instead of rasterization)
Comparison to hardware scan conversion

Shadows / Reflections (core algorithm)
Ray-Surface Intersection
Optimizations

Current Research

Problems with Recursion

Reflection rays may be traced forever
Generally, set maximum recursion depth

Same for transmitted rays (take refraction into
account)

Effects needed for Realism

(Soft) Shadows

Reflections (Mirrors and Glossy)
Transparency (Water, Glass)
Interreflections (Color Bleeding)

Complex lllumination (Natural, Area Light)
Realistic Materials (Velvet, Paints, Glass)

Discussed in this lecture
Not discussed but possible with distribution ray tracing
Hard (but not impossible) with ray tracing; radiosity methods

Ray/Object Intersections

Heart of Ray Tracer
One of the main initial research areas
Optimized routines for wide variety of primitives

Various types of info
Shadow rays: Intersection/No Intersection
Primary rays: Point of intersection, material, normals
Texture coordinates

Work out examples
Triangle, sphere, polygon, general implicit surface




Ray-Sphere Intersection

ray =P=P+Pt
sphere=(P-C)+(P-C)-r?=0

Ray-Sphere Intersection
t2(P+P)+2t P,+«(P,~C)+(P,~C)+(P,~C)-r*=0

Solve quadratic equations for t

2 real positive roots: pick smaller roo

Both roots same: tangent to sphere /C)

One positive, one negative root: ray

origin inside sphere (pick + root) @
ck

Complex roots: no intersection (che

discriminant of equation first) /C)

Ray-Triangle Intersection

One approach: Ray-Plane intersection, then
check if inside triangle

Plane equation:

Ray-Sphere Intersection

ray =P=P+Pt
sphere=(P-C)«(P-C)-r?=0
Substitute

Slmpllfy

t2(P,+P)+2t PB,«(P,—C)+(P,~C)+(P,-C)-r*=0

Ray-Sphere Intersection

Intersection point: ray = P= 150 A I51t

Normal (for sphere, this is same as coordinates

in sphere frame of reference, useful other tasks)
p-C

normal = ——
P-C

Ray-Triangle Intersection

One approach: Ray-Plane intersection, then
check if inside triangle

Plane equation:

plane=P<fi—A+i=0
Combine with ray equation:




Ray inside Triangle Ray inside Triangle

ane intersect with plane, still need to find if in 3 P=aA+pB+yC
triangle 20,820,720

Many possibilities for triangles, general polygons 8 a+B+y=1
(point in polygon tests)

We find parametrically [barycentric coordinates]. Also

useful for other applications (texture mapping)
B P—A=B(B-A)+7(C-A)
P=0A+pBB+yC
20,420,y 20
oa+fB+y=1

0<pB<1,0<y<1
B+y <1

Other primitives Ray-Tracing Transformed Objects

Much early work in ray tracing focused on ray-primitive We have an optimized ray-sphere test
intersection tests But we want to ray trace an ellipsoid...

Cones, cylinders, ellipsoids Solution: Ellipsoid transforms sphere
. . Apply inverse transform to ray, use ray-sphere
Boxes (espemally useful for boundlng boxes) Allows for instancing (traffic jam of cars)

General planar polygons Mathematical details worked out in class
Many more

Many references. For example, chapter in Glassner
introduction to ray tracing (see me if interested)

Transformed Objects Outline

Consider a general 4x4 transform M
Will need to implement matrix stacks like in OpenGL

History

Basic Ray Casting (instead of rasterization)

Apply inverse transform M- to ra
PRl y Comparison to hardware scan conversion

Locations stored and transform in homogeneous
coordinates : Shadows / Reflections (core algorithm)
Vectors (ray directions) have homogeneous coordinate

set to 0 [so there is no action because of translations] Ray-Surface Intersection

Do standard ray-surface intersection as modified Optimizations

Transform intersection back to actual coordinates Current Research
Intersection point p transforms as Mp
Distance to intersection if used may need recalculation
Normals n transform as M-n. Do all this before lighting




Acceleration

Testing each object for each ray is slow

Fewer Rays
Adaptive sampling, depth control
Generalized Rays
Beam tracing, cone tracing, pencil tracing etc.
Faster Intersections
Optimized Ray-Object Intersections
Fewer Intersections

We just discuss some approaches at high level; chapter 13 briefly covers

Acceleration Structures: Grids

Outline

History

Basic Ray Casting (instead of rasterization)
Comparison to hardware scan conversion

Shadows / Reflections (core algorithm)
Ray-Surface Intersection
Optimizations

Current Research

Acceleration Structures

Bounding boxes (possibly hierarchical)
If no intersection bounding box, needn’ t check objects

Bounding Box

Spatial Hierarchies (Oct-trees, kd trees, BSP trees)

Acceleration and Regular Grids

Simplest acceleration, for example 5x5x5 grid
For each grid cell, store overlapping triangles

March ray along grid (need to be careful with
this), test against each triangle in grid cell

More sophisticated: kd-tree, oct-tree bsp-tree

Or use (hierarchical) bounding boxes

Try to implement some acceleration in HW 4

Interactive Raytracing

Ray tracing historically slow

Now viable alternative for complex scenes
Key is sublinear complexity with acceleration;
need not process all triangles in scene

Allows many effects hard in hardware

NVIDIA OptiX ray-tracing API like OpenGL
Today: TuringRT 10G rays/second:




= Ring - Stencil Routing

Glass Ball - Stencil Routing

Raytracing on Graphics Hardware

Modern Programmable Hardware general
streaming architecture

Can map various elements of ray tracing

Kernels like eye rays, intersect etc.

In vertex or fragment programs

Convergence between hardware, ray tracing
[Purcell et al. 2002, 2003]
http://graphics.stanford.edu/papers/photongfx

= Cornell Box - Bitonic Sort

Cornell Box - Increased Search Radius




