Computer Graphics

CSE 167 [Win 19], Lecture 10: Curves 2
Ravi Ramamoorthi

http://viscomp.ucsd.edu/classes/cse167/wi19

Survey Feedback

Idea of Blossoms/Polar Forms

Points on curve simply have u,=u, so that F(u) = f(u,u)
fis symmetric f(0,1) = f(1,0)

Only interpolate linearly between points with one arg different
f(O,u) = (1-u) f(0,0) + u f(0,1) Here, interpolate f(0,0) and f(0,1)=f(1,0)

Outline of Unit

Bezier curves (last time)
deCasteljau algorithm, explicit, matrix (last time)
Polar form labeling (blossoms)

B-spline curves

Not well covered in textbooks (especially as taught
here). Main reference will be lecture notes. If you
do want a printed ref, handouts from CAGD, Seidel

Idea of Blossoms/Polar Forms

(Optional) Labeling trick for control points and intermediate

deCasteljau points that makes thing intuitive

E.g. quadratic Bezier curve F(u)
Define auxiliary function f(u,,u,) [number of args = degree]
Points on curve simply have u,=u, so that F(u) = f(u,u)
And we can label control points and deCasteljau points not
on curve with appropriate values of (uj,u,)
f(0,1)=f(1,0)

Geometric interpretation: Quadratic

01=10

Polar Forms: Cubic Bezier Curve

001 011

/ N\

(00]0] 111

000 001 O11 1M

AN A AN

00u Olu 1lu

1-u ul-w
Ouu luu

AN/

uuu

Why Polar Forms?

Simple mnemonic: which points to interpolate and
how in deCasteljau algorithm

Easy to see how to subdivide Bezier curve (next)
which is useful for drawing recursively

Generalizes to arbitrary spline curves (just label

control points correctly instead of 00 01 11 for Bezier)

Easy for many analyses (beyond scope of course)

Geometrically

0721

Geometric Interpretation: Cubic

001 Ou1 011

Subdividing Bezier Curves

Drawing: Subdivide into halves (u = %2) Demo: hw3
Recursively draw each piece
At some tolerance, draw control polygon
Trivial for Bezier curves (from deCasteljau algorithm): hence
widely used for drawing

000 001 011 111

000 00u Ouu uuu uuu uul ull 111

Why specific labels/ control points on left/right?
How do they follow from deCasteljau?

Geometrically

0721

Subdivision in deCasteljau diagram Summary for HW 3 (with demo)

011
Bezier2 (Bezier discussed last time)

Given arbitrary degree Bezier curve, recursively

These (interior) points don’ t subdivide for some levels, then draw control polygon
appear in subdivided curves at all

000

Generate deCasteljau diagram; recursively call a routine

00(
000 with left edge and right edge of this diagram

1-u
You are given some code structure; you essentially just
Left part of Bezier curve ight part of Bezier curve need to compute appropriate control points for left, right
(000, 00u, Ouu, uuu) : : (uuu, 1uu, 11u, 111)
Always left edge of Always right edge of
deCasteljau pyramid \/ deCasteljau pyramid

DeCasteljau: Recursive Subdivision Outline of Unit

Input: Control points C; with 0 < i < n where n is the degree.
OQutput: L;, R; for left and right control points in recursion.

Bezier curves (last time)

1 for (level = n ; level > 0 ; level) {
if (level == n) { // Initial control points deCasteljau algorithm, explicit, matrix (last time)

Polar form labeling (blossoms)

B-spline curves

Not well covered in textbooks (especially as taught
: : : here). Main reference will be lecture notes. If you
Followed by recursive calls using left, right parts do want a printed ref, handouts from CAGD, Seidel

DeCasteljau (from last lecture) for midpoint

Bezier: Disadvantages B-Splines

: : : Cubic B-splines have C? continuity, local control
Single piece, no local control (move a control point,
whole curve changes) [Demo of HW 3] 4 segments / control point, 4 control points/
. e segment
Complex shapes: can be very high degree, difficult
. . . Knots where two segments join: Knotvector

In practice, combine many Bezier curve segments

But only position continuous at join since Bezier curves Knotvector uniform/non-uniform (we only consider

interpolate end-points (which match at segment boundaries) uniform cubic B-splines, not general NURBS)

Unpleasant derivative (slope) discontinuities at end-points

..) -
Can you see why this is an issue? knot: G2 continuty Demo of HW 3

deBoor points

Polar Forms: Cubic Bspline Curve

Labeling little different from in Bezier curve
No interpolation of end-points like in Bezier

Advantage of polar forms: easy to generalize

-101 012

/\ Uniform knot vector:

-2,-1,0,1,2.,3
Labels correspond to this

deCasteljau: Cubic B-Splines

[ing -10
Easy to generalize using e 012
polar-form labels

Impossible remember " ; 123
without

-2-10 -101 012\ 1/23
N PN PN /
(BNEHIB a3, 3 s

Explicit Formula (derive as exercise)

F(u)=[u’ v’ u 1]M

11-L|)§3\\\(3+L|?s‘°/¥
N S

-10u Olu

1
(1-u)2 (1+u)/2 /\ ,
\ PZR e A

Ouu
1-u

e \
3 \//(lﬂl)s“fﬂ AN

uauu

deCasteljau: Cubic B-Splines

i i -101 012
Easy to generalize using P
polar-form labels
Impossible remember 210 123
without
-2-10 -101 012 123
N PO /

\\ N\ A
PN e S D 9 9
! \\\ //", \\’ //. \!\\ // ?

-10u 01u 12u

deCasteljau: Cubic B-Splines

[ing -10
Easy to generalize using e 012
polar-form labels

Impossible remember " ; 123
without

-2-10 -101 012\ 1/23
S PN PN /
(BNEIBT a3, 3 s

-10u 01u

Summary of HW 3

BSpline Demo hw3

Arbitrary number of control points / segments
Do nothing till 4 control points (see demo)
Number of segments = # cpts — 3

Segment A will have control pts A,A+1,A+2,A+3

Evaluate Bspline for each segment using 4 control
points (at some number of locations, connect lines)

Use either deCasteljau algorithm (like Bezier) or
explicit form [matrix formula on previous slide]

Questions?

