
CSE 167: Problems on Transformations and OpenGL

Ravi Ramamoorthi

These are some worked out problems that I will go over in the review sessions. They are representative
of what you should understand, and may appear on the midterm. Brief solutions are provided in this note.
Try to make sure you do understand those. Some of you may also want to go over the exercises in the
relevant chapters 6 and 7 of the Marschner-Shirley text (if you have it; this is optional).

1. Write the homogeneous 4x4 matrices for the following transforms:

• Translate by +5 units in the X direction

• Rotate by 30 degrees about the X axis

• The rotation, followed by the translation above, followed by scaling by a factor of 2.

2. In 3D, consider applying a rotation R followed by a translation T. Write the form of the combined
transformation in homogeneous coordinates (i.e. supply a 4x4 matrix) in terms of the elements of R
and T. Now, construct the inverse transformation, giving the corresponding 4x4 matrix in terms of
R and T. You should simplify your answer (perhaps writing T as [Tx,Ty,Tz] and using appropriate
notation for the 9 elements of the rotation matrix, or using appropriate matrix and vector notation for
R and T). Verify by matrix multiplication that the inverse times the original transform does in fact
give the identity.

3. Adapted from the textbook. Consider flatland (without homogeneous coordinates) 2x2 transformation
matrices. Let’s say we want to scale by 1.5 (increase length 50%) not about the coordinate axes, but
about an axis at -45 degrees to the horizontal. What is the resulting transformation matrix?

4. Adapted from the textbook. How can any 2D or 3D transformation (without homogeneous coordinates)
be written (decomposed) as a combination of rotations and scales?

5. Write the 4x4 transformation matrix for rotation about an arbitrary point (rather than the origin)?

6. Derive the homogeneous 4x4 matrices for gluLookAt and gluPerspective.

7. Assume that in OpenGL, your near and far clipping planes are set at a distance of 1m and 100m
respectively. Further, assume your z-buffer has 9 bits of depth resolution. This means that after the
gluPerspective transformation, the remapped z values [ranging from -1 to +1] are quantized into 512
discrete depths.

• How far apart are these discrete depth levels close to the near clipping plane? More concretely,
what is the z range (i.e. 1m to ?) of the first discrete depth?

• Now, consider the case where all the interesting geometry lies further than 10m. How far apart
are the discrete depth levels at 10m? Compare your answer to the first part and explain the cause
for this difference.
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• How many discrete depth levels describe the region between 10m and 100m? What is the number
of bits required for this number of depth levels? How many bits of precision have been lost?
What would you recommend doing to increase precision?

8. Consider the following operations in the standard OpenGL pipeline: Scan conversion or Rasterization,
Texture Mapping, Projection Matrix, Transformation of Points and Normals by the ModelView Matrix,
Dehomogenization (perspective division), clipping. Briefly explan what each of these operations are,
and in what order they are usually performed and why. Which of these operations are conventionally
performed in the vertex shader, fragment shader, or the OpenGL fixed pipeline?

Answers

1. Homogeneous Matrices A general representation for 4x4 matrices involving rotation and translation
is (

R3×3 T3×1

01×3 11×1,

)
(1)

where R is 3× 3 rotation matrix, and T is a 3× 1 translation matrix.
For a translation along the X axis by 3 units T = (5, 0, 0)t, while R is the identity. Hence, we have

1 0 0 5
0 1 0 0
0 0 1 0
0 0 0 1

 . (2)

In the second case, where we are rotating about the X axis, the translation matrix is just 0. We need to
remember the formula for rotation about an axis, which is (with angle θ),

1 0 0 0
0 cos θ − sin θ 0
0 sin θ cos θ 0
0 0 0 1

 =


1 0 0 0
0
√

3/2 −1/2 0
0 1/2

√
3/2 0

0 0 0 1

 . (3)

Finally, when we are combining these transformations, S*T*R, we apply the rotation first, followed by
a translation. It is easy to verify by matrix multiplication, that this simply has the same form as equation 1
(but see the next problem for when we have R*T). The scale just multiplies everything by a factor of 2,
giving 

2 0 0 10
0
√

3 −1 0
0 1

√
3 0

0 0 0 1

 . (4)

It is also possible to obtain this result by matrix multiplication of S*T*R


2 0 0 0
0 2 0 0
0 0 2 0
0 0 0 1




1 0 0 5
0 1 0 0
0 0 1 0
0 0 0 1




1 0 0 0
0
√

3/2 −1/2 0
0 1/2

√
3/2 0

0 0 0 1

 =


2 0 0 10
0
√

3 −1 0
0 1

√
3 0

0 0 0 1

 . (5)
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2. Rotations and translations Having a rotation followed by a translation is simply T*R, which has the
same form as equation 1. The inverse transform is more interesting. Essentially (TR)−1 = R−1T−1 =
Rt ∗ −T , which in homogeneous coordinates is(

Rt
3×3 03×1

01×3 1

)(
I3×3 −T3×1

01×3 1

)
=

(
Rt

3×3 −Rt
3×3T3×1

01×3 1

)
. (6)

Note that this is the same form as equation 1, using R′ and T ′ with R′ = Rt = R−1 and T ′ = −RtT .
Finally, we may verify that the product of the inverse and the original does in fact give the identity.(
Rt

3×3 −Rt
3×3T3×1

01×3 1

)(
R3×3 T3×1

01×3 1

)
=

(
Rt

3×3R3×3 Rt
3×3T3×1 −Rt

3×3T3×1

01×3 1

)
=

(
I3×3 03×1

01×3 1

)
(7)

3. Scaling about an axis For all these cases of non-standard transforms, we first apply an operation, here
a rotation to align the coordinate axes, then apply the scale, and then undo the rotation. In particular, we
would first rotate by +45 degrees to align the axis with the horizontal, then scale by (1.5,1), and then rotate
by -45 degrees to undo the initial rotation. The net transform M is

M = R(−45)S(1.5, 1)R(+45) = RSRt, (8)

where R and S are the rotation matrix for -45 degrees, and scale matrices respectively, and we use that
R−1 = Rt. Plugging in numerical values, the net transformation is

M =

(
1√
2

1√
2

− 1√
2

1√
2

)(
1.5 0

0 1

)(
1√
2
− 1√

2
1√
2

1√
2

)
=

(
5
4 −1

4
−1

4
5
4

)
=

(
1.25 −.25
−.25 1.25

)
(9)

4. Decomposing Transformations As illustrated by the previous problem, any symmetric matrix can be
written (via eigenvalue decomposition) as RSRt where R is an orthogonal (and hence rotation) matrix and
S is diagonal (and hence a scale matrix). Let’s call the columns of R (the eigenvectors) unit vectors v1 and
v2, and the diagonal elements (eigenvalues) of S as λ1 and λ2.

Then, any symmetric 2x2 or 3x3 transformation matrix can be considered as non-uniform scaling by the
eigenvalues (λ1, λ2) about the new axes (v1,v2). In other words, we first rotate (v1,v2) to (x, y) using
Rt. Then, we apply the standard scaling along coordinate axes given by S, and finally we undo the rotation
using R, just as in the previous exercise, i.e., rotate (x, y) to (v1,v2).

For general, non-symmetric transformation matrices, we can use a singular-value decomposition USV t.
The diagonal entries of S are now called the singular values and denoted by (σ1, σ2), and the columns of
U and V are now respectively the left and right singular vectors. We still have the same sequence of steps.
First, rotate v1 and v2 to the x and y axes using V t, then scale in x and y by (σ1, σ2) using S, and finally
rotate the x and y axes to (u1,u2) (the transform by U ). While we have illustrated this in 2D, the same
results hold in 3D (or higher dimensions for that matter).

5. Rotation about arbitrary point The same basic idea applies as for problem 3. We move the point to
the origin (a translation), do a standard rotation, and undo the translation. Let us call the center of rotation c
and consider a point p. We really want to compute

p′ = c +R(p− c) = Rp + (c−Rc), (10)
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with the net transformation matrix written as

M = T (c)RT (−c). (11)

Multiplying this out for rotation and translation matrices (see problems 1 and 2),

M =

(
I3×3 c3×1

01×3 1

)(
R3×3 03×1

01×3 1

)(
I3×3 −c3×1

01×3 1

)
=

(
R3×3 c3×1 −Rc3×1

01×3 1

)
, (12)

which agrees with equation 10.

6. gluLookAt and gluPerspective I wrote this answer earlier to conform in notation to the Unix Man
Pages. Some of you might find it easier to just understand this from the lecture slides in the transformation
lectures than this derivation and may want to skip over this section if you already understand the concepts.

gluLookat defines the viewing transformation and is given by gluLookAt(eyex, eyey, eyez, centerx, cen-
tery, centerz, upx, upy, upz), corresponds to a camera at eye looking at center with up direction up. First, we
define the normalized viewing direction. The symbols used here are chosen to correspond to the definitions
in the man page.

F =

 Cx − Ex

Cy − Ey

Cz − Ez

 f = F/ ‖ F ‖ . (13)

This direction f will correspond to the −Z direction, since the eye is mapped to the origin, and the
lookat point or center to the negative z axis. What remains now is to define the X and Y directions. The
Y direction corresponds to the up vector. First, we define UP ′ = UP/ ‖ UP ‖ to normalize. However,
this may not be perpendicular to the Z axis, so we use vector cross products to define X = −Z × Y and
Y = X ×−Z. In our notation, this defines auxiliary vectors,

s =
f × UP ′

‖ f × UP ′ ‖
u =

s× f
‖ s× f ‖

. (14)

Note that this requires the UP vector not to be parallel to the view direction. We now have a set of directions
s,u,−f corresponding to X,Y, Z axes. We can therefore define a rotation matrix,

M =


sx sy sz 0
ux uy uz 0
−fx −fy −fz 0
0 0 0 1

 , (15)

that rotates a point to the new coordinate frame.
However, gluLookAt requires applying this rotation matrix about the eye position, not the origin. It

is equivalent to glMultMatrixf(M) ; glTranslateD(-eyex, -eyey, -eyez) ; This corresponds to a translation T
followed by a rotation R. We know (using equation 6 as a guideline for instance), that this is the same as
the rotation R followed by a modified translation R3×3T3×1. Written out in full, the matrix will then be

G =


sx sy sz −sxex − syey − szez

ux uy uz −uxex − uyey − uzez

−fx −fy −fz fxex + fyey + fzez

0 0 0 1

 . (16)

gluPerspective defines a perspective transformation used to map 3D objects to the 2D screen and is
defined by gluPerspective(fovy, aspect, zNear, zFar) where fovy specifies the field of view angle, in degrees,
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in the y direction, and aspect specifies the aspect ratio that determines the field of view in the x direction.
The aspect ratio is the ratio of x (width) to y (height). zNear and zFar represent the distance from the viewer
to the near and far clipping planes, and must always be positive.

First, we define f = cot(fovy/2) as corresponding to the focal length or focal distance. A 1 unit height
in Y at Z = f should correspond to y = 1. This means we must multiply Y by f and corresponding X by
f/aspect. The matrix has the form

M =


f

aspect 0 0 0
0 f 0 0
0 0 A B
0 0 −1 0

 . (17)

We will explain the form of the above matrix. The form of terms f/aspect and f has already been explained.
The term−1 in the last line is needed to divide by the distance Z as required in perspective, and the negative
sign is because OpenGL conventions require us to look down the −Z axis.

It remains to find A and B. Those are chosen so the near and far clipping planes are taken to−1 and +1
respectively. Indeed, the entire viewing volume or frustum is mapped to a cube between −1 and +1 along
all axes. Using the matrix, we can easily formulate that the remapped depth is given by

z′ =
Az +B

−z
= −A− B

z
, (18)

where one must remember that points in front of the viewer have negative z as per OpenGL conventions.
Now, the required conditions z = −zNear ⇒ z′ = −1 and z = −zFar ⇒ z′ = 1 have,

−A+
B

zNear
= −1 −A+

B

zFar
= +1 (19)

Solving this system gives

A =
zFar + zNear

zNear − zFar
B =

2 · zFar · zNear
zNear − zFar

, (20)

and the final matrix

G =


f

aspect 0 0 0
0 f 0 0
0 0 zFar+zNear

zNear−zFar
2·zFar·zNear
zNear−zFar

0 0 −1 0

 . (21)

7. Z-buffer in OpenGL The purpose of this question is to show how depth resolution degrades as one
moves further away from the near clipping plane, since the remapped depth is nonlinear (and reciprocal) in
the original depth values.

Equation 18 gives us the formula for remapping z. We just need to find A and B, which we can
do by solving, or plugging directly into equation 20 using zNear = 1 and zFar = 100. We obtain
A = −101/99 ≈ −1.02 and B = −200/99 ≈ −2.02. The remapped value is then given by

z′ = 1.02− 2.02
| z |

. (22)

Note that for mathematical simplicity, you might imagine the far plane at infinity, so we don’t need the .02.
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For the remaining parts of the question, it is probably simplest to just use differential techniques. We
can obtain

dz′ ≈ 2
| z |2

d | z | ⇒ | dz |= | z |
2

2
| dz′ | (23)

To consider one depth bucket, we simply need to set | dz′ |= 1/256 ≈ 0.004. Now, using the equation
above, setting | z |= 1, we get | dz |≈ 0.002. In other words, the first depth bucket ranges from a depth of
1m to a depth of approximately 1.0019m, and we can resolve depths 2mm apart.

Now, consider | z |= 10, and plug in above. We know that | dz |∼| z |2, so | dz |≈ 0.2, and the depth
buckets around z = 10m are in 20cm increments and we lose resolving power quadratically, with a danger
that many different objects may go into the same depth bucket. This brings us to the fundamental point of
this problem that depth levels are closer near the near plane and depth resolution decreases far away.

Finally, we consider the depth levels between 10m and 100m. Using equation 22, 10m transforms to
1.02 − 2.02/10 ≈ 0.82. Thus, only a range of 0.18 remains. Hence, we only have 0.18 ∗ 256 = 46 depth
buckets, or less than 6 bits of precision. We have lost more than 3 bits of precision. To increase precision,
we should move the near clipping plane further out if interesting geometry is in the 10m− 100m range.

Order of OpenGL operations While the pipeline is programmable, a standard rendering program will
still perform operations in this order.

1. Modelview Matrix: Each vertex’s spatial coordinates are transformed by the modelview matrix M
as x′ = Mx. Simultaneously, normals are transformed by the inverse transpose, n′ = M−tn and
renormalized if specified. This operation is usually conducted in the vertex shader.

2. Projection Matrix: The projection matrix is then applied to project objects into the image plane, also
in the vertex shader (sometimes, the combined operation is applied).

3. Clipping: Clipping is then done in the homogeneous coordinates against the standard viewing planes
x = ±w, y = ±w, z = ±w. Clipping is done before dehomogenization to avoid the perspective
divide for vertices that are clipped anyway. This is usually a fixed function OpenGL functionality,
though of course some over-riding in the shaders is permitted.

4. Dehomogenization or Perspective divide: Perspective divide by the fourth or homogeneous coordi-
nate w then occurs. Again, this happens in the fixed function OpenGL part between the shaders.

5. Scan conversion or Rasterization: Finally, the primitive is converted to fragments by scan conversion
or rasterization. This is the core fixed piece still left in openGL.

6. Texture mapping: Texture mapping is application of image textures to geometry. It is a fragment-level
operation (like depth testing) which happens in the fragment shader.
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