Computer Graphics

CSE 167 [Win 17], Lecture 8: OpenGL 2
Ravi Ramamoorthi

http://viscomp.ucsd.edu/classes/cse167/wi17

| (=14 g¥oYe [o] (oo \VAN o) gl M-Ye3 1] (-}

Emren

Make mytest1 more
ambitious

Sequence of steps

Demo

Outline
Review of demo from last lecture

Basic geometry setup for cubes (pillars), colors
Single geometric object, but multiple colors for pillars

Matrix Stacks and Transforms (draw 4 pillars)
Depth testing (Z-buffering)

Animation (moving teapot)

Texture Mapping (wooden floor)

Best source for OpenGL is the red book and GLSL book. Of course,

this is more a reference manual than a textbook, and you are better off
implementing rather reading end to end.

To Do

Continue working on HW 2. Can be difficult
Class lectures, programs primary source

Can leverage many sources (GL(SL) book, excellent
online documentation, see links class website)

It is a good idea to copy (and modify) relevant segments

Review of Last Demo

Changed floor to all white, added global for teapot and
teapotloc, moved geometry to new header file

Demo 0 [set DEMO to 4 all features]

#include <GL/glut.h> //also <GL/glew.h>; <GLUT/glut.h> for Mac OS
#include “shaders.h”
#include “geometry.h”

int mouseoldx, mouseoldy ; // For mouse motion

GLfloat eyeloc = 2.0 ; // Where to look from; initially 0 -2, 2
GLfloat teapotloc = -0.5 ; // ** NEW ** where the teapot is located
GLint animate = 0 ; // ** NEW ** whether to animate or not

GLuint vertexshader, fragmentshader, shaderprogram ; // shaders

const int DEMO = 0 ; // ** NEW ** To turn on and off features

Geometry Basic Setup 1

const int numobjects = 2 ; // number of objects for buffer
const int numperobj = 3 ;
const int ncolors = 4 ;

GLUint VAOs[numobjects+ncolors], teapotVAO; // VAO (Vertex Array
Object) for each primitive object

GLuint buffers[numperobj*numobjects+ncolors], teapotbuffers[3] ;
** NEW ** List of buffers for geometric data

GLuint objects[numobjects] ; // ** NEW ** For each object
GLenum PrimType[numobjects] ;

GLsizei NumElems[numobjects] ;

// For the geometry of the teapot
ector <glm::vec3> teapotVertices;
ector <glm::vec3> teapotNormals;

std: :vector <unsigned int> teapotIndices;

// To be used as a matrix stack for the modelview.

std::vector <glm::mat4> modelviewStack;

Geometry Basic Setup 2 Cube geometry (for pillars)

const GLfloat wd = 0.1 ;
const GLfloat ht = 0.5 ;
const GLfloat _cubecol[4][3] {

{1.0, 0.0, 0.0}, {0.0, 1.0, 0.0}, {0.0, 0.0, 1.0}, {1.0, 1.0,
0.0} } ;

const GLfloat cubeverts[8] [3] = {
{-wd, -wd, 0.0}, {-wd, wd, 0.0}, {wd, wd, 0.0}, {wd, -wd, 0.0},
{-wd, -wd, ht}, {wd, -wd, ht}, {wd, wd, ht}, {-wd, wd, ht}

// ** NEW ** Floor Geometry is specified with a vertex array
// ** NEW ** Same for other Geometry

enum {Vertices, Colors, Elements} ; // For arrays for object
enum {FLOOR, CUBE} ; // For objects, for the floor

const GLfloat floorverts[4][3]
{0.5, 0.5, 0.0}, {-0.5, 0.5, }o;
0.0} f

- GLfloat cubecol[12][3] ;

const GLfloat floorcol[4][3] = { eSS ERHAD GO B © {

{1.0, 1.0, 1.0}, {1.0, 1.0, 1.0}, {1.0, 1.0, 1.0}, {1.0, 1.0, 1.0} 1, 2}, {0, 2, 3}, // BOTTOM
) 5 6}, {4, 7}, // TOP

const GLubyte floorinds[1][6] = { {0, 1, 2, 0, 2, 3} } ; 7}, {0, 1}, // LEFT
const GLfloat floortex[4][2] = { 5}, {0, 4}, // FRONT

{1.0, 1.0}, {0.0, 1.0}, {0.0, 0.0}, {1.0, 0.0} 6}, {3, €, 5}, // RIGHT
Yo 6}, {1, 2} // BACK

Initialize Geometry Function Initialize Cubes with Colors 1
//"This Iunction takes in a vertex, color, index and type array

void initobject(GLuint object, GLfloat * vert, GLint sizevert, GLfloat * col, GLint

i s X . . X . "
Gizacol, Clnbyte + inde, Ghint sizeind, Clanwm type) void initcubes (GLuint object, GLfloat{ vert, GLint sizevert, GLubyte

inds, GLint sizeind, GLenum type)
int offset = object * numpercbj ;

glBindVertexArray (VAOs [object]) ;

glBindBuffer (GL_ARRAY BUFFER, buffers([Vertices + offset]);
glBufferData (GL ARRAY BUFFER, sizevert, vert, GL_STATIC DRAW) ; for (int k = 0; k < 3; kit+)

// Use layout location 0 for the vertices cubecol[j] [k] = _cubecol[i] [k];
glEnableVertexAttribArray (0) ; glBindVertexArray (VAOs [object + i]) ;
glVertexAttribPointer (0, 3, GL_FLOAT, GL_FALSE, 3 * sizeof (GLfloat), 0);
glBindBuffer (GL_ARRAY_BUFFER, buffers[Colors + offset]);

glBufferData (GL_ARRAY BUFFER, sizecol, col, GL_STATIC_DRAW) ;

// Use layout location 1 for the colors

for (int i = 0; i < ncolors; i++) {
for (int j = 0; j < 8; j++)

int offset = object * numperobj;

int base = numobjects * numperob:

glBindBuffer (GL_ARRAY BUFFER, buffers[Vertices + offset]);
glEnsbleVertexAttribArray (1) ; glBufferData (GL_ARRAY BUFFER, sizevert, vert, GL_STATIC_DRAW) ;
glVertexAttribPointer(l, 3, GL _FLOAT, GL_FALSE, 3 * sizeof (GLfloat), 0); // Use layout location 0 for the vertices

glBindBuffer (GL_ELEMENT ARRAY BUFFER, buffers[Elements + offset]); glEnableVertexAttribArray (0) ;

glBufferData (GL_ELEMENT ARRAY BUFFER, sizeind, inds, GL_STATIC_DRAW) ; glVertexAttribPointer (0, 3, GL_FLOAT, GL_FALSE, 3 *

PrimType [object] = type; sizeof (GLfloat), 0);

NumElems [object] = sizeind; glBindBuffer (GL_ARRAY_BUFFER, buffers([base + i]);

// Prevent further modification of this VAO by unbinding it glBufferData (GL_ARRAY BUFFER, sizeof (cubecol), cubecol,
glBindVertexArray (0) ;} GL_STATIC_DRAW) ;

Initialize Cubes with Colors 2 Drawing with/without Colors

// Use layout location 1 for the colors
glEnableVertexAttribArray (1) ;

glVertexAttribPointer (1, 3, GL_FLOAT, GL_FALSE, 3 *
sizeof (GLfloat), 0);

1BindVertexa: VAOs [object + color]);

glBindBuffer (GL_ELEMENT ARRAY BUFFER, buffers|[Elements + offset]); GO s (VD (A3 <> aeiles])

S S— o ey e glDrawElements (PrimType [object], NumElems[object], GL_UNSIGNED_BYTE,
GL_STATIC_DRAW); - - ! ‘ ‘ glBindVertexArray (0) ;

PrimType[object] = type;

// And a function to draw with them, similar to drawobject but with color

void drawcolor (GLuint object, GLuint coloz) {

NumElems[object] = sizeind;

// Prevent further modification of this VAO by unbinding it void drawobject (GLuint object) {

glBindVertexArray(0); } glBindVertexArray (VAOs [object]) ;
} glDrawElements (PrimType [object] , NumElems[object], GL_UNSIGNED_BYTE,
//in init glBindVertexArray (0) ;

initobject (FLOOR, (GLfloat *) floorverts, sizeof (floorverts), (GLfloat
*) floorcol, sizeof (f£loorcol), (GLubyte *) floorinds, sizeof
(£loorinds), GL_TRIANGLES) ;

initcubes (CUBE, (GLfloat *)cubeverts, sizeof (cubeverts), (GLubyte void loadteapot() // See source code for details if interested
*) cubeinds, sizeof (cubeinds), GL_TRIANGLES) ;

loadteapot() ;

Outline
Review of demo from last lecture

Basic geometry setup for cubes (pillars), colors
Single geometric object, but multiple colors for pillars

Matrix Stacks and Transforms (draw 4 pillars) - - Coordinates
Modelview matrix
Depth testing (Z-buffering) [Object Transforms Viewport Transform
. . . and glm::lookAt] (glViewport)
Animation (moving teapot)
Eye coordinates
Texture Mapping (wooden floor) (used for lighting)

Projection matrix Window Coords

Best source for OpenGL is the red book and GLSL book. Of course, [3D to 2D, usually
this is more a reference manual than a textbook, and you are better off glm::perspective]
implementing rather reading end to end.

Transformations Drawing Pillars 1 (in display)

// 1st pillar: Right-multiply modelview as in old OpenGL
Matrix Stacks pushMatrix (modelview) ; // push/pop functions for stack
Old OpenGL: glPushMatrix, glPopMatrix, glLoad, gIMultMatrixf modelview = modelview * glm::translate(identity, glm::vec3(-0.4,
Useful for hierarchically defined figures, placing pillars 0otly :0D) 5 /4 el eilaEen s
Current recommendation is STL stacks managed yourself, which is glUniformMatrixdfv(modelviewPos, 1, GL FALSE, &(modelview)[0][0]);
done in mytest2. (You must manage the stack yourself for HW 2). drawcolor (CUBE, 0) ;
popMatrix (modelview) ;
Transforms
Write your own translate, scale, rotate for HW 1 and HW 2
Careful of OpenGL convention: In old-style, Right-multiply current
matrix (last is first applied). glm operators follow this sometimes.

// 2nd pillar
pushMatrix (modelview) ;
modelview = modelview * glm::translate (identity, glm::vec3(0.4,
Also gluLookAt (gim::lookAt), gluPerspective (gim::perspective) -0.4, 0.0)) ; // build translation matrix
Remember just matrix like any other transform, affecting modelview glUniformMatrixdfy(modelviewkos/ Iy CLEFALSE R &(modelyiew)l[0N[01NN
See mytest for how to best implement these ideas drawcolor (CUBE, 1) ;
popMatrix (modelview) ;
// Function pushes specified matrix onto the modelview stack
void pushMatrix(glm::mat4 mat) {
modelviewStack.push_back (glm: :matd (mat)); }

Drawing Pillars 2 Demo

// 3zd pillar
pushMatrix (modelview) ;
modelview = modelview * glm::translate(identity, Demo 1
glm::vec3 (0.4, 0.4, 0.0));
glUniformMatrix4fv (modelviewPos, 1, GL FALSE, &(modelview)[0][0]); .
arawcolor (CUBE, 2) : Does order of drawing matter?
popMatrix (modelview) ;
7 O e : What if | move floor after pillars in code?
pushMatrix (modelview) ;
modelview = modelview * glm::translate(identity, . . .
glm: :vec3(-0.4, 0.4, 0.0)); Is this desirable? If not, what can | do about it?
glUniformMatrix4fy (modelviewPos, 1, GL_FALSE, &(modelview)[0][0]);
drawcolor (CUBE, 3) ;
popMatrix (modelview) ;
// This function pops a matrix from the modelview stack void
popMatrix (glm: :matds mat) {
if (modelviewStack.size()) {
mat = glm: :matd (modelviewStack.back()) ;
modelviewStack.pop_back () ;
}
else { // Just to prevent errors when popping from an empty stack.
mat = glm::matd(1.0f); }

Outline
Review of demo from last lecture

Basic geometry setup for cubes (pillars), colors
Single geometric object, but multiple colors for pillars

Matrix Stacks and Transforms (draw 4 pillars)
Depth testing (Z-buffering)

Animation (moving teapot)

Texture Mapping (wooden floor)

Best source for OpenGL is the red book and GLSL book. Of course,

this is more a reference manual than a textbook, and you are better off
implementing rather reading end to end.

Turning on Depth test (Z-buffer)

OpenGL uses a Z-buffer for depth tests
For each pixel, store nearest Z value (to camera) so far
If new fragment is closer, it replaces old z, color
[“less than” can be over-ridden in fragment program]
Simple technique to get accurate visibility
(Be sure you know what fragments and pixels are)

Changes in main fn, display to Z-buffer

glutInitDisplayMode (GLUT_DOUBLE | GLUT RGB | GLUT DEPTH) ;
glClear (GL_COLOR BUFFER BIT | GL_DEPTH BUFFER BIT);

In init function

glEnable (GL_DEPTH_TEST) ;
glDepthFunc (GL_LESS) ; // The default option

Outline
Review of demo from last lecture

Basic geometry setup for cubes (pillars), colors
Single geometric object, but multiple colors for pillars

Matrix Stacks and Transforms (draw 4 pillars)
Depth testing (Z-buffering)

Animation (moving teapot)

Texture Mapping (wooden floor)

Best source for OpenGL is the red book and GLSL book. Of course,

this is more a reference manual than a textbook, and you are better off
implementing rather reading end to end.

Double Buffering

New primitives draw over (replace) old objects
Can lead to jerky sensation

Solution: double buffer. Render into back
(offscreen) buffer. When finished, swap buffers
to display entire image at once.

Changes in main and display

glutInitDisplayMode (GLUT_DOUBLE | GLUT_RGB | GLUT_DEPTH) ;

glutSwapBuffers () ;
glFlush ();

Demo 2
Does order of drawing matter any more?
What if | change near plane to 0?

Is this desirable? If not, what can | do about it?

Demo

Demo 3
Notice how teapot cycles around
And that | can pause and restart animation

And do everything else (zoom etc.) while teapot
moves in background

Drawing Teapot (in display)

// ** NEW ** Put a teapot in the middle that animates
pushMatrix (modelview) ;
modelview = modelview * glm::translate(identity,
glm: :vec3 (teapotloc, 0.0, 0.0));
// The following two transforms set up and center the teapot
// Transforms right-multiply the modelview matrix (top of the stack)
modelview = modelview * glm::translate(identity, glm::vec3(0.0,
0.0, 0.1));
modelview = modelview * glm::rotate (identity, glm::pi<float>() /
2.0f, glm ec3(1.0, 0.0, 0.0));
float size = 0.235f; // Teapot size
modelview = modelview * glm::scale(identity, glm::vec3(size, size,
size));
glUniformMatrix4fv (modelviewPos, 1, GL_FALSE, &(modelview)[0][0]);
drawteapot () ;
popMatrix (modelview) ;

void drawteapot() {// drawteapot() function in geometry.h
glBindVertexArray (teapotVAO) ;
glDrawElements (GL_TRIANGLES, teapotIndices.size(), GL UNSIGNED INT, 0) ||
glBindVertexArray (0) ;

Keyboard callback (p to pause)

GLint animate = 0 ; // ** NEW ** whether to animate or not

void keyboard (unsigned char key, int x, int y)
{
switch (key) {
case 27: // Escape to quit
exit(0) ;
break ;
case 'p': // ** NEW ** to pause/restart animation
animate = 'animate ;
if (animate) glutIdleFunc(animation) ;
else glutIdleFunc (NULL) ;
break ;
default
break ;

New globals and basic setup

// In mytest3.cpp

GLubyte woodtexture[256][256]1[3] ; // texture (from grsites.com)
GLuint texNames[1] ; // texture buffer

GLuint istex ; // blend parameter for texturing

GLuint islight ; // for lighting

GLint texturing = 1 ; // to turn on/off texturing

GLint lighting = 1 ; // to turn on/off lighting

// In Display

glUniformli(islight,0) ; // Turn off lighting (except on teapot, later)
glUniformli (istex, texturing) ;

drawtexture (FLOOR, texNames[0]) ; // Texturing floor

// drawobject (FLOOR)

glUniformli (istex,0) ; // Other items aren't textured

Simple Animation routine

// ** NEW ** in this assignment, is an animation of a teapot
// Hitting p will pause this animation; see keyboard callback
void animation(void) {

teapotloc = teapotloc + 0.005 ;

if (teapotloc > 0.5) teapotloc = -0.5 ;

glutPostRedisplay() ;
}

Outline

Review of demo from last lecture

Display lists (extend init for pillars)

Matrix stacks and transforms (draw 4 pillars)
Depth testing or z-buffering

Animation (moving teapot)

Texture mapping (wooden floor) [mytest3]

Simple Toggles for Keyboar:

case 't': // ** NEW ** to turn on/off texturing ;
texturing = !texturing ;
glutPostRedisplay() ;
break ;
case 's': // ** NEW ** to turn on/off shading (always smooth) ;
lighting = !lighting ;
glutPostRedisplay() ;

break ;

Adding Visual Detail Texture Mapping

Basic idea: use images instead of more Important topic: nearly all objects textured
polygons to represent fine scale color variation Wood grain, faces, bricks and so on
Adds visual detail to scenes

Can be added in a fragment shader

Polygonal model With surface texture

Setting up texture Texture Coordinates

inittextura ("wood.ppm", shaderprogram) ; // in init() Each vertex must have a texture coordinate: pointer to texture.
Interpolate for pixels (each fragment has st)
// Very basic code to read a ppm file // set up Texture Coordinates
// BAnd then set up buffers for texture coordinates glGenTextures(l, texNames):;
void inittexture (const char * filename, GLuint program) { glBindVertexArray (VAOs [FLOOR]) ;
int i,3,k ; glBindBuffer (GL_ARRAY BUFFER, buffers[numobjects*numperobj+ncolors]) ;
o © glBufferData (GL_ARRAY BUFFER, sizeof (floortex),
P floortex,GL_STATIC_DRAW) ;
assert(fp = fopen(filename,"rb")) ;
f£scanf (£p, "%*s %*d %$*d ¥*d¥*c") ;
for (i i< 256 ; it++)
for 0 ; j < 256 ; j++)
for (k = 0 ; k < 3 ; k+)

// Use layout location 2 for texcoords

glEnableVertexAttribArray (2) ;

glVertexAttribPointer(2, 2, GL_FLOAT, GL FALSE, 2 * sizeof (GLfloat), 0) /]
fscanf (fp, "%c", & (woodtexture[i] [j] [k]))

glActiveTexture (GL_TEXTUREO) ;
fclose (fp)

glEnable (GL_TEXTURE_2D) ;

glBindTexture (GL_TEXTURE 2D, texNames[0]) ;

Specifying the Texture Image Texture Image and Bind to Shader

i i glTexImage2D (GL_TEXTURE_2D,0,GL_RGB, 256, 256, 0, GL_RGB,
glc;l'rz)élrm%gr%%?(ttargeé,;gv)el, components, width height, GT, DNSTENED, BYTE | woodtartural™ ; »
: » lype, glTexParameterf (GL_TEXTURE_2D, GL_TEXTURE MAG_FILTER,

target is GL_TEXTURE_2D SIELINEZR)
glTexParameterf (GL_TEXTURE_2D, GL_TEXTURE MIN_FILTER,
level is (almost always) 0 CEEEUERE
ts = 3 or 4 (RGB/RGBA glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE WRAP_S, GL REPEAT)
components = 3 or 4 () glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE WRAP_T, GL_REPEAT) ;
width/height MUST be a power of 2
border = 0 (usuaHy) //-Define a sampler. See page 709 in red book, 7th ed.
GLint texsampler ;
format = GL_RGB or GL_RGBA (usually) texsampler = glGetUniformLocation (program, "tex")

type = GL_UNSIGNED_BYTE, GL_FLOAT, etc... glUniformii (texsampler,0) ; // Could also be GL_TEXTUREO

istex = glGetUniformLocation (program, "istex")

Drawing with Texture Final Steps for Drawing (+Demo)
Vertex shader (just pass on texture coords)

// And a function to draw with textures, similar to drawobject layout (location = 2) in vec2 texCoords;

e CHETAITAEO(Chns cpos, @inE GoEsd) { out vec2 texcoord; // similar definitions for positions and normals
glBindTexture (GL_TEXTURE 2D, texture);
glBindVertexArray (VAOs [object]) ;

glDrawElements (PrimType [object], NumElems[object],
GL_UNSIGNED_BYTE, 0); gl_Position = projection * modelview * vecd (position, 1.0f);

uniform int istex ;

void main() {

glBindVertexArray (0) ; mynormal = mat3(transpose (inverse (modelview))) * normal ;
myvertex = modelview * vec4 (position, 1.0f) ;
texcoord = vec2 (0.0, 0.0); // Default value just to prevent errors

if (istex != 0){ texcoord = texCoords;} }

Fragment shader (can be more complex blend)

uniform sampler2D tex ;
uniform int istex ;
void main (void) {

if (istex > 0) fragColor = texture(tex, texcoord) ;

More on Texture (very briefly) Displacement Mapping

Full lecture later in course
Optimizations for efficiency
Mipmapping
Filtering
Texture Coordinate generation
Texture Matrix

Environment Mapping

If very ambitious, read more in OpenGL

lllumination Maps Environment Maps

Quake introduced illumination maps or light
maps to capture lighting effects in video games
Texture map: - |

Images from /{lumination and Reflection Maps:
Tex_tu T2 e Simulated Objects in Simulated and Real Environments
+ |Ight map: Gene Miller and C. Robert Hoffman
SIGGRAPH 1984 “Advanced Computer Graphics Animation” Course Notes

Solid textures

Texture values indexed
by 3D location (x,y,z)

» Expensive storage, or

* Compute on the fly,
e.g. Perlin noise >

