Computer Graphics

CSE 167 [Win 17], Lecture 7: OpenGL Shading
Ravi Ramamoorthi

http://viscomp.ucsd.edu/classes/cse167/wi17

| (=14 g¥oYe [o] (oo \VAN o) gl M-Ye3 1] (-}

Lecture deals with lighting (DEMO for HW 2)

Briefly explain shaders used for mytest3
Do this before explaining code fully so you can start HW 2
Primarily explain with reference to source code

More formal look at lighting and shading possible
Will be discussed in more detail if you take CSE 163

Importance of Lighting

Important to bring out 3D appearance (compare
teapot now to in previous demo)

Important for correct shading under lights

The way shading is done also important
Flat: Entire face has single color (normal) from one vertex
Gouraud or smooth: Colors at each vertex, interpolate

glShadeModel(GL_FLAT) [old] glShadeModel(GL_SMOOTH) [old]

To Do

This week’s lectures have all info for HW 2
Start EARLY

Demo for mytest3

Lighting on teapot
Blue, red highlights
Diffuse shading
Texture on floor

Update as we move

Brief primer on Color

Red, Green, Blue primary colors
Can be thought of as vertices of a color cube
R+G = Yellow, B+G = Cyan, B+R = Magenta,
R+G+B = White
Each color channel (R,G,B) treated separately

RGBA 32 bit mode (8 bits per channel) often used

A is for alpha for transparency if you need it

Colors normalized to 0 to 1 range in OpenGL
Often represented as 0 to 255 in terms of pixel intensities

Also, color index mode (not so important)

Outline

Gouraud and Phong shading (vertex vs fragment)

Types of lighting, materials and shading
Lights: Point and Directional
Shading: Ambient, Diffuse, Emissive, Specular

Fragment shader for mytest3
HW 2 requires a more general version of this

Source code in display routine

Gouraud Shading — Details

_ Ly =y)by = y)
Yi=Y,
AV ARV
Yi=Ys
i L(x, = x,)+1,(x,—X,)
? X, =X,
Scan line

/

a

Actual implementation efficient: difference
equations while scan converting

Phong lllumination Model

Specular or glossy materials: highlights
Polished floors, glossy paint, whiteboards
For plastics highlight is color of light source (not object)
For metals, highlight depends on surface color

Really, (blurred) reflections of light source

« % G BN

Roughness

Vertex vs Fragment Shaders

Can use vertex or fragment shaders for lighting
Vertex computations interpolated by rasterizing
Gouraud (smooth) shading, as in mytest1
Flat shading: no interpolation (single color of polygon)

Either compute colors at vertices, interpolate
This is standard in old-style OpenGL
Can be implemented with vertex shaders

Or interpolate normals etc. at vertices

And then shade at each pixel in fra?ment shader
Phong shading (different from Phong illumination)
More accurate

Wireframe: glPolygonMode (GL_FRONT, GL_LINE)

Also, polygon offsets to superimpose wireframe
Hidden line elimination? (polygons in black...)

Gouraud and Errors

I, = 0 because (N dot E) is negative.

I, = 0 because (N dot L) is negative.

Any interpolation of |, and |, will be 0.

area of
desired
highlight

2 Phongs make a Highlight

Besides the Phong lllumination or Reflectance model, there
is a Phong Shading model.

Phong Shading: Instead of interpolating the intensities
between vertices, interpolate the normals.

The entire lighting calculation is performed for each pixel,
based on the interpolated normal. (Old OpenGL doesn’t do
this, but you can and will with current fragment shaders)

Examples and Color Plates Simple Vertex Shader in mytest3

A # i 330 // D t i 1de th: 330!
See OpenGL color plates (earlier eds) and glsl book vexssen =S58 coxe © ot use sny vexston eidex Than
// Inputs
layout (location = 0) in vec3 position;
layout (locatio 1) in vec3 normal;

layout (location = 2) in vec2 texCoords;

// Extra outputs, if any
out vecd myvertex;
out vec3 mynormal;

out vec2 texcoord;

// Uniform variables

. uniform mat4 projection;
http://blog.cryos.net/categories/15-Avogadro/P3.html

http:/iblenderartists.org/forum/showthread.php?11430-Games-amp-Tutorials-(updated-Jan-5-2011) EaSEccana cipuodelia e

uniform int istex ;

Simple Vertex Shader in mytest3 Outline

Gouraud and Phong shading (vertex vs fragment)

void main() {

gl_Position = projection * modelview * vecd (position, 1.0f);
- _)) ; Types of lighting, materials and shading

mynormal = mat3(transpose (inverse (modelview))) * normal ; N . . .

myvertex = modelview * vecd (position, 1.0f) ; Lights: Point and Directional

texcoord = vec2 (0.0, 0.0); // Default value just to prevent errors Shading: Ambient, Diffuse, Emissive, Specular

if (istex !'= 0){

texcoord = texCoords; Fragment shader for mytest3
} HW 2 requires a more general version of this

Source code in display routine

Lighting and Shading Types of Light Sources

Point
Rest of this lecture considers lighting Position, Color 1

L . . Attenuation (quadratic model) atten=———
In real world, complex lighting, materials interact @) k, +kd+k.d?*

. . Attenuation
We study this more formally in CSE 163 Usually assume no attenuation (not physically correct)
. . , Quadratic inverse square falloff for point sources
For now some basic approximations to capture Linear falloff for line sources (tube lights). Why?

key effects in lighting and shading No falloff for distant (directional) sources. Why?

Ingoee 9766 OpgnGL flxeq {hctiompipeline Directional (w=0, infinite far away, no attenuation)
But remember that’ s not physically based
Spotlights (not considered in homework)
Spot exponent
Spot cutoff

Material Properties

Need normals (to calculate how much diffuse,
specular, find reflected direction and so on)
Usually specify at each vertex, interpolate
GLUT used to do it automatically for teapots etc
(we provide meshes with normals instead for you in hw 2)
Can do manually for parametric surfaces
Average face normals for more complex shapes

Four terms: Ambient, Diffuse, Specular, Emissive

Ambient Term

Hack to simulate multiple bounces, scattering of light

Assume light equally from all directions

Global constant . A <
I %
Never have £ v A

black pixels

| = Ambient

Diffuse Term

Rough matte (technically Lambertian) surfaces

Light reflects equally in all directions

i}_l_ N I~NeL

1= intensity, . * diffuse

‘material
i=0

*atten, * [max (L + N,0)]

Emissive Term

material

<l >

W | = Emission
£ v A

Only relevant for light sources when looking directly at them
» Gotcha: must create geometry to actually see light
» Emission does not in itself affect other lighting calculations

Diffuse Term

Rough matte (technically Lambertian) surfaces

Light reflects equally in all directions

. S I~NeL

Specular Term

Glossy objects, specular reflections

Light reflects close to mirror direction

Phong lllumination Model

Specular or glossy materials: highlights
Polished floors, glossy paint, whiteboards
For plastics highlight is color of light source (not object)
For metals, highlight depends on surface color

Really, (blurred) reflections of light source

Roughness

Phong Formula

=—L+2(L-N)N

Demo in mytest3

What happens when we make surface less shiny?

Idea of Phong lllumination
Find a simple way to create highlights that are view-
dependent and happen at about the right place
Not physically based

Use dot product (cosine) of eye and reflection of
light direction about surface normal

Alternatively, dot product of half angle and normal
Has greater physical backing. We use this form

Raise cosine lobe to some power to control
sharpness or roughness

Alternative: Half-Angle (Blinn-Phong)
I ~(N«H)"

= Z intensity ., * specular, * atten, * [max (N e H,0)]"""**

material
i=0

Diffuse and specular components for most materials

Outline

Gouraud and Phong shading (vertex vs fragment)

Types of lighting, materials and shading
Lights: Point and Directional
Shading: Ambient, Diffuse, Emissive, Specular

Fragment shader for mytest3
HW 2 requires a more general version of this

Source code in display routine

Fragment Shader Setup

#version 330 core // Do not use any version older than 330!

Inputs fragment shader are outputs of same name of vertex shader
vecd myvertex;
vec3 mynormal;

vec2 texcoord;

Output the frag color

out vecd fragColor;

uniform sampler2D tex ;
uniform int istex ;
uniform int islight ; // are we lighting.

uniform vec3 color;

Fragment Shader Compute Lighting

vecd ComputeLight (const in vec3 direction, const in vecd
lightcolor, const in vec3 normal, const in vec3 halfvec, const
in vec4 mydiffuse, const in vecd myspecular, const in float
myshininess) {

float nDotL = dot(normal, direction) ;
vec4 lambert = mydiffuse * lightcolor * max (nDotL, 0.0) ;

float nDotH = dot(normal, halfvec) ;

vec4 phong = myspecular * lightcolor * pow (max (nDotH,
0.0) , myshininess) ;

vecd retval = lambert + phong ;

return retval ;

Fragment Shader Main Routine

// Light 0, directional
vec3 direction0 = normalize (lightOdirn) ;
vec3 half0 = normalize (direction0 + eyedirn) ;

vecd col0 = ComputeLight (direction0, lightOcolor, normal,
half0, diffuse, specular, shininess) ;

// Light 1, point
vec3 position = lightlposn.xyz / lightlposn.w ;
vec3 directionl = normalize (position - mypos) ;
// no attenuation
vec3 halfl = normalize (directionl + eyedirn) ;

vec4 coll = ComputeLight(directionl, lightlcolor, normal,
halfl, diffuse, specular, shininess) ;

fragColor = ambient + col0 + coll ;
}

Fragment Shader Variables

// Assume light 0 is directional, light 1 is a point light.
// Actual light values are passed from the main OpenGL program.

// This could be fancier. My goal is to illustrate a simple idea.
uniform vec3 lightOdirn ;

uniform vec4 lightOcolor ;

uniform vec4 lightlposn ;

uniform vec4 lightlcolor ;

// Now, set the material parameters. These could be bound to
// a buffer. But for now, I'll just make them uniform.

// I use ambient, diffuse, specular, shininess.

// Bmbient is just additive and doesn't multiply the lights.
uniform vec4 ambient ;

uniform vec4 diffuse ;

uniform vec4 specular ;

uniform float shininess ;

Fragment Shader Main Transforms

void main (void)
{
if (istex > 0) fragColor = texture(tex, texcoord);
else if (islight == 0) fragColor = vec4(color, 1.0f) ;
else {
// They eye is always at (0,0,0) looking down -z axis

// Also compute current fragment position, direction to eye
const vec3 eyepos = vec3(0,0,0) ;
vec3 mypos = myvertex.xyz / myvertex.w ; // Dehomogenize

vec3 eyedirn = normalize (eyepos - mypos) ;

// Compute normal, needed for shading.

vec3 normal = normalize (mynormal) ;

Outline

Gouraud and Phong shading (vertex vs fragment)

Types of lighting, materials and shading
Lights: Point and Directional
Shading: Ambient, Diffuse, Emissive, Specular

Fragment shader for mytest3
HW 2 requires a more general version of this

Source code in display routine

Light Set Up (in display) Moving a Light Source

/* New for Demo 3; add lighting effects */
{ Lights transform like other geometry
const GLfloat one[] = {1,1,1,1} ;
const GLfloat medium[] = {0.5f, 0.5f, 0.5f, 1}; Only modelview matrix (not projection). The only real
ke ERlenis o) © (0.25; 028, 025 1) application where the distinction is important
const GLfloat high[] = {100} ;
const GLfloat zero[] = {0.0, 0.0, 0.0, 1.0} ; Types oflight motion

SEres GHACHE Mg restesll] © {fly 059 O BhF Stationary: set the transforms to identity before specifying it
const GLfloat light specularl[] = {0, 0.5, 1, 1};

const GLfloat light direction[] = {0.5, 0, 0, 0}; // Dir 1t

const GLfloat light positionl[] = {0, -0.5, 0, 1}; Moving light: Push Matrix, move light, Pop Matrix

GLfloat 1ightO[4], lightl[4] ;

// set Light and Material properties for the teapot Moving light source with viewpoint (attached to camera). Can
// Lights are transformed by current modelview matrix. simply set Iight to000 so origin wrt eye coords (make

// The shader can't do this globally. So we do so manually. modelview matrix identity before doing this)
transformvec (light_direction, 1light0) ;

transformvec (light positionl, lightl) ;

Modelview Light Transform Set up Lighting for Teapot

glUniform3fv (lightOdirn, 1, light0) ;

/* New helper transformation function to transform vector by glUniformdfv(lightOcolor, 1, light specular)
modelview */ glUniform4fv(lightlposn, 1, lightl) ;

void transformvec (const GLfloat input[4], GLfloat output[4]) glUniform4fv(lightlcolor, 1, light specularl) ;

// glUniformdfv(lightlcolor, 1, zero)

glm::vecd4 inputvec(input[0], input[l], input[2], input[3]);
glm: :vecd outputvec = modelview * inputvec; glUniform4fv (ambient,1,small) ;
output[0] = outputvec([0]; glUniformdfv (diffuse,l,medium) ;
output[1] = outputvec[1]; glUniformd£v (specular,l,one) ;
TR & e s glUniformlfv (shininess,1,high) ;

output[3] = outputvec(3]; // Enable and Disable everything around the teapot
// Generally, we would also need to define normals etc.
// But the teapot object file already defines these for us.
if (DEMO > 4)
glUniformli (islight,lighting) ; // lighting only teapot.

Shader Mappings in init

vertexshader = initshaders (GL_VERTEX SHADER, "shaders/light.vert")
fragmentshader = initshaders (GL_FRAGMENT_ SHADER, "shaders/light.frag")

shaderprogram = initprogram(vertexshader, fragmentshader) ;

// * NEW * Set up the shader parameter mappings properly for lighting.
islight = glGetUniformLocation (shaderprogram,"islight")

lightOdirn = glGetUniformLocation (shaderprogram,"light0dirn"
lightOcolor = glGetUniformLocation (shaderprogram,"lightOcolor")
lightlposn = glGetUniformLocation (shaderprogram,"lightlposn") ;
lightlcolor = glGetUniformLocation (shaderprogram,"lightlcolor")
ambient = glGetUniformLocation (shaderprogram,"ambient")

diffuse = glGetUniformLocation (shaderprogram,"diffuse")

specular = glGetUniformLocation (shaderprogram,"specular")

shininess = glGetUniformLocation (shaderprogram, "shininess")

