
1 

Computer Graphics 

CSE 167 [Win 17], Lecture 6: OpenGL 1 

Ravi Ramamoorthi 

http://viscomp.ucsd.edu/classes/cse167/wi17 

To Do 

§  Questions/concerns about assignment 1? 

§  Remember it is due Jan 30.  Ask me or TAs re problems 

 

§  HW 2 (much) more difficult than HW 1   
§  START EARLY  
§  Will cover all needed material mostly Tue next week 

Demo: Surreal (many years ago) This Lecture 

§  Introduction to OpenGL and simple demo code 
§  mytest1.cpp ; you compiled mytest3.cpp for HW 0 
§  Include skeleton code on all platforms for programs 

§  I am going to show (maybe write) actual code  
§  Online code helps you understand HW 2 better   
§  ASK QUESTIONS if confused!! 

§  Simple demo  of mytest1 (and maybe hw2) 

§  This lecture deals with very basic OpenGL setup.  
Next 2 lectures will likely be more interesting 

Outline 

§  Basic idea about OpenGL 

§  Basic setup and buffers 

§  Matrix modes 

§  Window system interaction and callbacks 

§  Drawing basic OpenGL primitives  

§  Initializing Shaders 
     Best source for OpenGL is the redbook.  Of course, this is more a 

reference manual than a textbook, and you are better off 
implementing rather reading end to end.   

Introduction to OpenGL 

§  OpenGL is a graphics API 
§  Portable software library (platform-independent) 
§  Layer between programmer and graphics hardware  
§  Uniform instruction set (hides different capabilities) 

§  OpenGL can fit in many places 
§  Between application and graphics system 
§  Between higher level API and graphics system 

§  Why do we need OpenGL or an API? 
§  Encapsulates many basic functions of 2D/3D graphics 
§  Think of it as high-level language (C++) for graphics 
§  History: Introduced  SGI in 92, maintained by Khronos 
§  Precursor for DirectX, WebGL, Java3D etc.   



2 

Programmer’’s View 

Application 

Graphics Package Application 

OpenGL Application Programming Interface 

Hardware and software (graphics card) 

Output Device Input Device Input Device 

Slide inspired by Greg Humphreys 

OpenGL Rendering Pipeline (simple) 

Geometry  
Primitive  
Operations 

Pixel 
Operations 

Scan  
Conversion 
(Rasterize) 

Texture 
Memory 

Fragment 
Operations 

Fram
ebuffer 

Vertices 

Images 

Traditional Approach: Fixed function pipeline (state machine) 
New Development (2003-): Programmable pipeline 

Programmable in  
Modern GPUs  
(Vertex Shader) 

Programmable in  
Modern GPUs 
(Fragment  
 Shader) 

GPUs and Programmability 

§  Since 2003, can write vertex/pixel shaders 

§  Older fixed function pipeline deprecated, not taught 

§  Like writing C programs (see OpenGL book) 

§  Performance >> CPU (even used for non-graphics) 

§  Operate in parallel on all vertices or fragments  

§  Are teaching CSE 167 with programmable shaders 
§  And modern OpenGL (3.1+)! 

Full OpenGL Pipeline 

Vertex Data 
(Program) 

Vertex  
Shader 

Tessellation 
Control 
Shader 

Tessellation 
Evaluation 
Shader 

 
Geometry 
Shader 

Primitive Setup 
Clipping 
Rasterization 

Fragment  
Shader 

Texture/Image Data 
(Program) 

Final Pixel Color 
(Image) 

User/program generates original vertices, textures 
We cover programmable vertex and fragment shaders in course 
OpenGL primitive setup, clipping, rasterization not programmable 
Tessellation shaders take patches (splines) to output vertices 
Geometry shaders process primitives, can add/remove geometry 

Outline 

§  Basic idea about OpenGL 

§  Basic setup and buffers 

§  Matrix modes 

§  Window system interaction and callbacks 

§  Drawing basic OpenGL primitives  

§  Initializing Shaders 

Buffers and Window Interactions 

§  Buffers: Color (front, back, left, right), depth (z), 
accumulation, stencil.  When you draw, you write 
to some buffer (most simply, front and depth) 

§  Buffers also used for vertices etc.  Buffer data 
and buffer arrays (will see in creating objects) 

§  No window system interactions (for portability) 
§  But can use GLUT / FreeGLUT (or Motif, GLX, Tcl/Tk) 
§  Callbacks to implement mouse, keyboard interaction 



3 

Basic Setup (can copy; slight OS diffs) 
int main(int argc, char** argv) 
{ 
   glutInit(&argc, argv); 
   // Requests the type of buffers (Single, RGB). 
   // Think about what buffers you would need... 
   glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB); 
   // Need to add GLUT_3_2_CORE_PROFILE for Apple/Mac OS 
   glutInitWindowSize (500, 500);  
   glutInitWindowPosition (100, 100); 
   glutCreateWindow ("Simple Demo with Shaders"); 
   // glewInit(); // GLEW related stuff for non-Apple systems 
   init (); // Always initialize first 
 
   // Now, we define callbacks and functions for various tasks. 
   glutDisplayFunc(display);  
   glutReshapeFunc(reshape) ; 
   glutKeyboardFunc(keyboard); 
   glutMouseFunc(mouse) ; 
   glutMotionFunc(mousedrag) ; 
   glutMainLoop(); // Start the main code 
   deleteBuffers(); //Termination. Delete buffers generated in init() 
   return 0;   /* ANSI C requires main to return int. */ 
} 

Outline 

§  Basic idea about OpenGL 

§  Basic setup and buffers 

§  Matrix modes 

§  Window system interaction and callbacks 

§  Drawing basic OpenGL primitives  

§  Initializing Shaders 

§  Inspired by old OpenGL.  Now, only best practice, not requirement 
§  You could do your own thing, but this is still the best way to develop viewing 

§  Viewing consists of two parts 
§  Object positioning: model view transformation matrix 
§  View projection: projection transformation matrix 

§  Old OpenGL (no longer supported/taught in 167), two matrix stacks 
§  GL_MODELVIEW_MATRIX, GL_PROJECTION_MATRIX 
§  Could push and pop matrices onto stacks 

§  New OpenGL: Use C++ STL templates to make stacks as needed 
§  e.g. stack <mat4> modelview ; modelview.push(mat4(1.0)) ; 
§  GLM libraries replace many deprecated commands.  Include mat4  

§  Convention: camera always at the origin, pointing in the –z direction 
§  Transformations move objects relative to the camera 

§  In old OpenGL, Matrices are column-major and right-multiply top of 
stack. (Last transform in code is first actually applied).  In new GLM, 
similarly (read the assignment notes and documentation).   

Viewing in OpenGL Basic initialization code for viewing 
#include <GL/glut.h> //also <GL/glew.h>; <GLUT/glut.h> for Mac OS  
#include <stdlib.h>  //also stdio.h, assert.h, glm, others  
 
int mouseoldx, mouseoldy ; // For mouse motion 
GLfloat eyeloc = 2.0 ; // Where to look from; initially 0 -2, 2 
glm::mat4 projection, modelview; // The mvp matrices themselves 
 
void init (void)  
{ 
/* select clearing color  */ 
   glClearColor (0.0, 0.0, 0.0, 0.0); 
 
/* initialize viewing values  */ 
   projection = glm::mat4(1.0f); // The identity matrix 
 
   // Think about this.  Why is the up vector not normalized? 
   modelview = glm::loakAt(glm::vec3(0,-eyeloc,eyeloc),                        

        glm::vec3(0,0,0), glm::vec3(0,1,1)) ; 
   // (To be cont’’d).  Geometry and shader set up later ... 

Outline 

§  Basic idea about OpenGL 

§  Basic setup and buffers 

§  Matrix modes 

§  Window system interaction and callbacks 

§  Drawing basic OpenGL primitives  

§  Initializing Shaders 

Window System Interaction 

§  Not part of OpenGL 

§  Toolkits (GLUT) available (red book: freeglut) 

§  Callback functions for events 
§  Keyboard, Mouse, etc. 
§  Open, initialize, resize window 
§  Similar to other systems (X, Java, etc.) 

§  Our main func included  
   glutDisplayFunc(display);  
   glutReshapeFunc(reshape) ; 
   glutKeyboardFunc(keyboard); 
   glutMouseFunc(mouse) ; 
   glutMotionFunc(mousedrag) ; 



4 

Basic window interaction code 
/* Defines what to do when various keys are pressed */ 
void keyboard (unsigned char key, int x, int y)  
{ 
  switch (key) { 
  case 27:  // Escape to quit 
    exit(0) ; 
    break ; 
  default: 
    break ; 
  } 
} 
 
/* Reshapes the window appropriately */ 
void reshape(int w, int h) 
{ 
   glViewport (0, 0, (GLsizei) w, (GLsizei) h); 
   // Note that the field of view takes in a radian angle 
   projection = glm::perspective(30.0f / 180.0f * glm::pi<float>(),    

  (GLfloat)w / (GLfloat)h, 1.0f, 10.0f); 
   glUniformMatrix4fv(projectionPos,1, GL_FALSE, &projection[0][0]);   
   // To send the projection matrix to the shader 
} 
 

Mouse motion (demo) 
/* Defines a Mouse callback to zoom in and out */ 
/* This is done by modifying gluLookAt         */ 
/* The actual motion is in mousedrag           */ 
/* mouse simply sets state for mousedrag       */ 
void mouse(int button, int state, int x, int y) { 
  if (button == GLUT_LEFT_BUTTON) { 
    if (state == GLUT_UP) { 
      // Do Nothing ; 
    } 
    else if (state == GLUT_DOWN) { 
      mouseoldx = x ; mouseoldy = y ; // so we can move wrt x , y  
    } 
  } 
  else if (button == GLUT_RIGHT_BUTTON && state == GLUT_DOWN)  
    { // Reset gluLookAt 
      eyeloc = 2.0 ;  
      modelview = glm::lookAt(glm::vec3(0, -eyeloc, eyeloc), 

     glm::vec3(0, 0, 0), glm::vec3(0, 1, 1)); 
 // Send the updated matrix to the shader 

      glUniformMatrix4fv(modelviewPos,1,GL_FALSE,&modelview[0][0]); 
      glutPostRedisplay() ; // Redraw scene 
    } 
} 
 

Mouse drag (demo) 

void mousedrag(int x, int y) { 
  int yloc = y - mouseoldy  ;    // We will use the y coord to 
zoom in/out 
  eyeloc  += 0.005*yloc ;         // Where do we look from 
  if (eyeloc < 0) eyeloc = 0.0 ; 
  mouseoldy = y ; 
 
  /* Set the eye location */ 
  modelview = glm::lookAt(glm::vec3(0, -eyeloc, eyeloc),  

  glm::vec3(0, 0, 0), glm::vec3(0, 1, 1)); 
  // Send the updated matrix over to the shader 
  glUniformMatrix4fv(modelviewPos,1,GL_FALSE,&modelview[0][0]);    
   
  glutPostRedisplay() ; 
} 
 

Outline 

§  Basic idea about OpenGL 

§  Basic setup and buffers 

§  Matrix modes 

§  Window system interaction and callbacks 

§  Drawing basic OpenGL primitives  

§  Initializing Shaders 

New OpenGL Primitives (fewer) 

Points Lines (also strips, loops) Polygon 

Triangle Quad Quad Strip 

Triangle Strip Triangle Fan 

Geometry  
§  Points (GL_POINTS) 

Stored in Homogeneous coordinates 

§  Line segments (GL_LINES)  
§  Also (GL_LINE_STRIP, GL_LINE_LOOP) 

§  Triangles (GL_TRIANGLES) 
§  Also strips, fans (GL_TRIANGLE_STRIP, GL_TRIANGLE_FAN) 
 

§  More complex primitives (GLUT): Sphere, teapot, cube,… 
§  Must now be converted into triangles (which is what skeleton does) 



5 

Old OpenGL: Drawing 
§  Enclose vertices between glBegin() … glEnd() pair 

§  Can include normal C code and attributes like the colors 
§   Inside are commands like glVertex3f, glColor3f 
§  Attributes must be set before the vertex 

§  Assembly line (pass vertices, transform, shade) 
§  These are vertex, fragment shaders on current GPUs 
§  Immediate Mode: Sent to server and drawn 

§  Client-Server model (client generates vertices, 
server draws) even if on same machine 
§  glFlush() forces client to send network packet 
§  glFinish() waits for ack, sparingly use synchronization 

§  New OpenGL: Vertex Array Objects (next) 

Old OpenGL: Drawing (not used) 
void display(void) 
{ 
   glClear (GL_COLOR_BUFFER_BIT); 
 
   // draw polygon (square) of unit length centered at the origin 
   // This code draws each vertex in a different color.   
   // The hardware will blend between them.   
   // This is a useful debugging trick.  I make sure each vertex  
   // appears exactly where I expect it to appear. 
    
   glBegin(GL_POLYGON); 
      glColor3f (1.0, 0.0, 0.0); 
      glVertex3f (0.5, 0.5, 0.0); 
      glColor3f (0.0, 1.0, 0.0); 
      glVertex3f (-0.5, 0.5, 0.0); 
      glColor3f (0.0, 0.0, 1.0); 
      glVertex3f (-0.5, -0.5, 0.0); 
      glColor3f (1.0, 1.0, 1.0); 
      glVertex3f (0.5, -0.5, 0.0); 
   glEnd();  
   glFlush () ; 
} 
 

(-.5, -.5) 
BLUE 

(.5, -.5) 
WHITE 

(.5, .5) 
RED 

(-.5, .5) 
GREEN 

Modern OpenGL: Floor Specification 
const GLfloat floorverts[4][3] = { 

  {0.5, 0.5, 0.0}, {-0.5, 0.5, 0.0}, {-0.5, -0.5, 0.0}, {0.5, 
-0.5, 0.0} 

} ;  

const GLfloat floorcol[4][3] = { 

  {1.0, 0.0, 0.0}, {0.0, 1.0, 0.0}, {0.0, 0.0, 1.0}, {1.0, 1.0, 
1.0} 

} ;  

const GLubyte floorinds[1][6] = { {0, 1, 2, 0, 2, 3} } ; //tris  

const GLfloat floorverts2[4][3] = { 

  {0.5, 0.5, 1.0}, {-0.5, 0.5, 1.0}, {-0.5, -0.5, 1.0}, {0.5, 
-0.5, 1.0} 

} ;  

const GLfloat floorcol2[4][3] = { 

  {1.0, 0.0, 0.0}, {1.0, 0.0, 0.0}, {1.0, 0.0, 0.0}, {1.0, 0.0, 
0.0} 

} ; // all red and on top 

const GLubyte floorinds2[1][6] = { {0, 1, 2, 0, 2, 3} } ; //tris  

Modern OpenGL: Vertex Array Objects 
const int numobjects = 2 ;  // number of objects for buffer  

const int numperobj  = 3 ;  // Vertices, colors, indices 

GLUint VAOs[numobjects];    // A Vertex Array Object per object 

GLuint buffers[numperobj] ; // List of buffers for geometric data  

GLuint objects[numobjects]; // For each object 

GLenum PrimType[numobjects];// Primitive Type (triangles, strips) 

GLsizei NumElems[numobjects] ; // Number of geometric elements 

 

// Floor Geometry is specified with a vertex array 

enum {Vertices, Colors, Elements} ; // For arrays for object  

enum {FLOOR, FLOOR2} ; // For objects, for the floor 

 

//------In init below (creates buffer objects for later use)------ 

 glGenVertexArrays(numobjects, VAOs); //create unique identifiers 

 glGenBuffers(numperobj*numobjects, buffers); //and for buffers 

void deleteBuffers() { // Like a destructor 

 glDeleteVertexArrays(numobjects, VAOs); 

 glDeleteBuffers(numperobj*numobjects, buffers);} 

 

Modern OpenGL: Initialize Buffers 
void initobject (GLuint object, GLfloat * vert, GLint sizevert, GLfloat * 

col, GLint sizecol, GLubyte * inds, GLint sizeind, GLenum type) { 

  int offset = object * numperobj; 

  glBindVertexArray(VAOs[object]); 

  glBindBuffer(GL_ARRAY_BUFFER, buffers[Vertices+offset]) ;  

  glBufferData(GL_ARRAY_BUFFER, sizevert, vert,GL_STATIC_DRAW); 

  // Use layout location 0 for the vertices 

  glEnableVertexAttribArray(0); 

  glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 3 * sizeof(GLfloat), 0); 

  glBindBuffer(GL_ARRAY_BUFFER, buffers[Colors+offset]) ;  

  glBufferData(GL_ARRAY_BUFFER, sizecol, col,GL_STATIC_DRAW); 

  // Use layout location 1 for the colors 

  glEnableVertexAttribArray(1); 

  glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, 3 * sizeof(GLfloat), 0); 

  glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, buffers[Elements+offset]) ;  

  glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeind, inds,GL_STATIC_DRAW); 

  PrimType[object] = type; 

  NumElems[object] = sizeind; 

  // Prevent further modification of this VAO by unbinding it 

  glBindVertexArray(0); 

} 

 

Modern OpenGL: Draw Vertex Object 
void drawobject(GLuint object) { 

  glBindVertexArray(VAOs[object]); 

  glDrawElements(PrimType[object], NumElems[object],  
    GL_UNSIGNED_BYTE, 0);  

  glBindVertexArray(0); //unbind 

} 

 

void display(void) { 

   glClear (GL_COLOR_BUFFER_BIT); // clear all pixels 

   drawobject(FLOOR) ;   

   drawobject(FLOOR2)  

   glFlush (); // start processing buffered OpenGL commands 

} 



6 

Initialization for Drawing, Shading 
#include "shaders.h" 

GLuint vertexshader, fragmentshader, shaderprogram ; // shaders 
    

   // Initialization in init() for Drawing 

 glGenVertexArrays(numobjects, VAOs) ; 

   glGenBuffers(numperobj*numobjects, buffers) ;  

 

   initobject(FLOOR, (GLfloat *) floorverts, sizeof(floorverts), (GLfloat 
*) floorcol, sizeof (floorcol), (GLubyte *) floorinds, sizeof 
(floorinds), GL_TRIANGLES) ;  

   initobject(FLOOR2, (GLfloat *) floorverts2, sizeof(floorverts2), 
(GLfloat *) floorcol2, sizeof (floorcol2), (GLubyte *) floorinds2, 
sizeof (floorinds2), GL_TRIANGLES) ;  

 

   // In init() for Shaders, discussed next  

   vertexshader = initshaders(GL_VERTEX_SHADER, "shaders/nop.vert") ; 

   fragmentshader = initshaders(GL_FRAGMENT_SHADER, "shaders/nop.frag") ; 

   shaderprogram = initprogram(vertexshader, fragmentshader) ;   

Demo (change colors) 

Outline 

§  Basic idea about OpenGL 

§  Basic setup and buffers 

§  Matrix modes 

§  Window system interaction and callbacks 

§  Drawing basic OpenGL primitives  

§  Initializing Shaders 

Full OpenGL Pipeline 

Vertex Data 
(Program) 

Vertex  
Shader 

Tessellation 
Control 
Shader 

Tessellation 
Evaluation 
Shader 

 
Geometry 
Shader 

Primitive Setup 
Clipping 
Rasterization 

Fragment  
Shader 

Texture/Image Data 
(Program) 

Final Pixel Color 
(Image) 

User/program generates original vertices, textures 
We cover programmable vertex and fragment shaders in course 
OpenGL primitive setup, clipping, rasterization not programmable 
Tessellation shaders take patches (splines) to output vertices 
Geometry shaders process primitives, can add/remove geometry 

Simplified OpenGL Pipeline 
§  User specifies vertices (via vertex arrays) 

§  For each vertex in parallel   
§  OpenGL calls user-specified vertex shader:        

Transform vertex (ModelView, Projection), other ops 

§  For each primitive, OpenGL rasterizes 
§  Generates a fragment for each pixel the fragment covers 

§  For each fragment in parallel 
§  OpenGL calls user-specified fragment shader:       

Shading and lighting calculations 
§  OpenGL handles z-buffer depth test unless overwritten 

§  Modern OpenGL is “lite” basically just a rasterizer 
§  “Real” action in user-defined vertex, fragment shaders 

Shader Setup 

§  Initializing (shader itself discussed later) 

1.  Create shader (Vertex and Fragment) 

2.  Compile shader  

3.  Attach shader to program 

4.  Link program  

5.  Use program  

§  Shader source is just sequence of strings 

§  Similar steps to compile a normal program 



7 

Shader Initialization Code 
GLuint initshaders (GLenum type, const char *filename) { 

  // Using GLSL shaders, OpenGL book, page 679 of 7th edition 

  GLuint shader = glCreateShader(type) ;  

  GLint compiled ;  

  string str = textFileRead (filename) ;  

  const GLchar * cstr = str.c_str() ;  

  glShaderSource (shader, 1, &cstr, NULL) ;  

  glCompileShader (shader) ;  

  glGetShaderiv (shader, GL_COMPILE_STATUS, &compiled) ;  

  if (!compiled) {  

    shadererrors (shader) ;  

    throw 3 ;  

  } 

 cout<<"Shader file " <<filename<<" successfully compiled.”<<endl; 

 return shader ;  

} 

 

Linking Shader Program 
GLuint initprogram (GLuint vertexshader, GLuint fragmentshader)  

{ 

  GLuint program = glCreateProgram() ;  

  GLint linked ;  

  glAttachShader(program, vertexshader) ;  

  glAttachShader(program, fragmentshader) ;  

  glLinkProgram(program) ;  

  glGetProgramiv(program, GL_LINK_STATUS, &linked) ;  

  if (linked) glUseProgram(program) ;  

  else {  

    programerrors(program) ;  

    throw 4 ;  

  } 

 cout<<"Shader program successfully attached and linked." << endl; 

 return program ;  

} 

Basic (nop) vertex shader 
§  In shaders/  nop.vert.glsl  nop.frag.glsl 

§  Written in GLSL (GL Shading Language) 
§  Vertex Shader (out values interpolated to fragment) 

 

# version 330 core 

// Do not modify the above version directive to anything older. 

 

// Shader inputs 

layout (location = 0) in vec3 position; 

layout (location = 1) in vec3 color; 

// Shader outputs, if any 

out vec3 Color; 

// Uniform variables 

uniform mat4 modelview; 

uniform mat4 projection; 

 

void main() { 

    gl_Position = projection * modelview * vec4(position, 1.0f); 

  Color = color; // Just forward this color to the fragment shader 

} 

Basic (nop) fragment shader 
# version 330 core 

// Do not modify the version directive to anything older than 330. 

 

// Fragment shader inputs are outputs of same name from vertex shader 

in vec3 Color; 

 

// Uniform variables (none) 

 

// Output 

out vec4 fragColor; 

 

void main (void)  

{         

 fragColor = vec4(Color, 1.0f); 

} 

 


