Computer Graphics

CSE 167 [Win 17], Lecture 6: OpenGL 1
Ravi Ramamoorthi

http://viscomp.ucsd.edu/classes/cse167/wi17

Demo: Surreal (many years ago)

Outline

Basic idea about OpenGL

Basic setup and buffers

Matrix modes

Window system interaction and callbacks
Drawing basic OpenGL primitives

Initializing Shaders

Best source for OpenGL is the redbook. Of course, this is more a
reference manual than a textbook, and you are better off
implementing rather reading end to end.

To Do

Questions/concerns about assignment 1?

Remember it is due Jan 30. Ask me or TAs re problems

HW 2 (much) more difficult than HW 1
START EARLY
Will cover all needed material mostly Tue next week

This Lecture

Introduction to OpenGL and simple demo code
mytest1.cpp ; you compiled mytest3.cpp for HW 0
Include skeleton code on all platforms for programs

| am going to show (maybe write) actual code
Online code helps you understand HW 2 better
ASK QUESTIONS if confused!!

Simple demo of mytest1 (and maybe hw2)

This lecture deals with very basic OpenGL setup.
Next 2 lectures will likely be more interesting

Introduction to OpenGL

OpenGL is a graphics AP/
Portable software library (platform-independent)
Layer between programmer and graphics hardware
Uniform instruction set (hides different capabilities)

OpenGL can fit in many places
Between application and graphics system
Between higher level APl and graphics system

Why do we need OpenGL or an API?
Encapsulates many basic functions of 2D/3D graphics
Think of it as high-level language (C++) for graphics
History: Introduced SGI in 92, maintained by Khronos
Precursor for DirectX, WebGL, Java3D etc.

Programmer’ s View OpenGL Rendering Pipeline (simple)

Programmable in
Modern GPUs Programmable in

Application (Vertex Shader) Modern GPUs

Geometry (Fragment
Pri Shader)

_ lication Graphics Package Scan
22 e g Conversi
(Rasterize) Operations
OpenGL Application Programming Interface

Texture
Hardware and software (graphics card) Memory
Output Device | | Input Device | | Input Device Traditional Approach: Fixed function pipeline (state machine)
New Development (2003-): Programmable pipeline

Slide inspired by Greg Humphreys

Jsyngawel

GPUs and Programmability Full OpenGL Pipeline

Since 2003, can write vertex/pixel shaders A V—’
hader

Older fixed function pipeline deprecated, not taught Vertex Data
(Program) Primitive Setup

Like writing C programs (see OpenGL book) Glipring

Rasterization

Performance >> CPU (even used for non-graphics)
Texture/Image Data > _, Final Pixel Color

Operate in parallel on all vertices or fragments (Program) [(Image)

User/program generates original vertices, textures
. . We cover programmable vertex and fragment shaders in course
Arit(jaCh(;ng %SE (’I;EL373V:Iih' programmable shaders OpenGL primitive setup, clipping, rasterization not programmable
nd modern OpenGL (3.1+)! Tessellation shaders take patches (splines) to output vertices
Geometry shaders process primitives, can add/remove geometry

Outline Buffers and Window Interactions

Buffers: Color (front, back, left, right), depth (z),
Basic setun and buffers accumulation, stencil. When you draw, you write
P to some buffer (most simply, front and depth)

Basic idea about OpenGL

MEIR B Buffers also used for vertices etc. Buffer data
Window system interaction and callbacks and buffer arrays (will see in creating objects)

No window system interactions (for portability)
P But can use GLUT / FreeGLUT (or Motif, GLX, Tcl/Tk)
Initializing Shaders Callbacks to implement mouse, keyboard interaction

Drawing basic OpenGL primitives

Basic Setup (can copy; slight OS diffs)

t main(int argc, char** argv)

glutInit(sarge, argv);
// Requests the type of buffers (Single, RGB).

// Think about what buffers you would need...
glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB);

// Need to add GLUT_3 2 _CORE_PROFILE for Apple/Mac OS
glutInitWindowSize (500, 500);

glutInitWindowPosition (100, 100);

glutCreateWindow ("Simple Demo with Shaders");

// glewInit(); // GLEW related stuff for non-Apple systems
init (); // Always initialize first

// Now, we define callbacks and functions for various tasks.
glutDisplayFunc (display) ;

glutReshapeFunc (reshape) ;

glutKeyboardFunc (keyboard) ;

glutMouseFunc (mouse) ;

glutMotionFunc (mousedrag) ;

glutMainLoop(); // Start the main code

deleteBuffers(); //Termination. Delete buffers generated in init()

return 0; /* ANSI C requires main to return int. */

Viewing in OpenGL
Inspired by old OpenGL. Now, only best practice, not requirement
You could do your own thing, but this is still the best way to develop viewing

Viewing consists of two parts
Object positioning: model view transformation matrix
View projection: projection transformation matrix

Old OpenGL (no longer supported/taught in 167), two matrix stacks
GL_MODELVIEW_MATRIX, GL_PROJECTION_MATRIX
Could push and pop matrices onto stacks

New OpenGL: Use C++ STL templates to make stacks as needed
e.g. stack <mat4> modelview ; modelview.push(mat4(1.0)) ;
GLM libraries replace many deprecated commands. Include mat4

Convention: camera always at the origin, pointing in the —z direction
Transformations move objects relative to the camera

In old OpenGL, Matrices are column-major and right-multiply top of
stack. (Last transform in code is first actually applied). In new GLM,
similarly (read the assignment notes and documentation).

Outline

Basic idea about OpenGL

Basic setup and buffers

Matrix modes

Window system interaction and callbacks
Drawing basic OpenGL primitives

Initializing Shaders

Outline

Basic idea about OpenGL

Basic setup and buffers

Matrix modes

Window system interaction and callbacks
Drawing basic OpenGL primitives

Initializing Shaders

Basic initialization code for viewing

#include <GL/glut.h> //also <GL/glew.h>; <GLUT/glut.h> for Mac OS

#include <stdlib.h> //also stdio.h, assert.h, glm, others

int mouseoldx, mouseoldy ; // For mouse motion
GLfloat eyeloc = 2.0 ; // Where to look from; initially 0 -2, 2
glm: :matd projection, modelview; // The mvp matrices themselves

void init (void)

{

/* select clearing color */
glClearColor (0.0, 0.0, 0.0, 0.0);

/* initialize viewing values */
projection = glm::mat4(1.0£f); // The identity matrix

// Think about this. Why is the up vector not normalized?
modelview = glm::loakAt (gl ec3(0,-eyeloc,eyeloc) ,

gl vec3(0,0,0), glm::vec3(0,1,1)) ;
// (To be cont’d). Geometry and shader set up later ...

Window System Interaction

Not part of OpenGL
Toolkits (GLUT) available (red book: freeglut)

Callback functions for events
Keyboard, Mouse, etc.
Open, initialize, resize window
Similar to other systems (X, Java, etc.)

Our main func included
glutDisplayFunc (display) ;
glutReshapeFunc (reshape) ;
glutKeyboardFunc (keyboard) ;
glutMouseFunc (mouse) ;
glutMotionFunc (mousedrag) ;

Basic window interaction code

/* Defines what to do when various keys are pressed */
void keyboard (unsigned char key, int x, int y)
{
switch (key) {
case 27: // Escape to quit
exit(0) ;
break ;
default:
break ;
}
}

/* Reshapes the window appropriately */

void reshape (int w, int h)

{
glviewport (0, 0, (GLsizei) w, (GLsizei) h);
// Note that the field of view takes in a radian angle
projection = glm::perspective(30.0f / 180.0f * glm::pi<float>(),

(GLfloat)w / (GLfloat)h, 1.0f, 10.0f);

glUniformMatrix4fv (projectionPos,1l, GL_FALSE, &projection[0][0]);
// To send the projection matrix to the shader

Mouse drag (demo)

void mousedrag(int x, int y) {
int yloc = y - mouseoldy ; // We will use the y coord to
zoom in/out
eyeloc += 0.005*yloc ;
if (eyeloc < 0) eyeloc = 0.0 ;
mouseoldy =y ;

// Where do we look from

/* Set the eye location */

modelview = glm::lookAt(glm::vec3(0, -eyeloc, eyeloc),
glm ec3(0, 0, 0), glm ec3(0, 1, 1))

// Send the updated matrix over to the shader

glUniformMatrix4fv (modelviewPos,1,GL_FALSE, &modelview[0] [0]) ;

glutPostRedisplay() ;

New OpenGL Primitives (fewer)

AV

Points Lines (also strips, loops)

Triangle

Ros— <2

Triangle Strip Triangle Fan

Mouse motion (demo)

/* Defines a Mouse callback to zoom in and out */
/* This is done by modifying gluLookAt &
/* The actual motion is in mousedrag e
/* mouse simply sets state for mousedrag */
void mouse (int button, int state, int x, int y) {
if (button GLUT_LEFT_BUTTON) {
if (stat LUT_UP) {
// Do Nothing ;
}
else if (state GLUT_DOWN) {
mouseoldx = x ; mouseoldy =y ; // so we can move wrt X , y
1
}
else if (button == GLUT_RIGHT BUTTON && state == GLUT_DOWN)
{ // Reset gluLookAt
eyeloc = 2.0 ;
modelview = glm: :lookAt(glm::vec3 (0, -eyeloc, eyeloc),
ec3(0, 0, 0), glm::vec3(0, 1, 1));
// Send the updated matrix to the shader
glUniformMatrix4£v (modelviewPos,1,GL_FALSE, &modelview[0] [0]) ;
glutPostRedisplay() ; // Redraw scene
}

Outline

Basic idea about OpenGL

Basic setup and buffers

Matrix modes

Window system interaction and callbacks
Drawing basic OpenGL primitives

Initializing Shaders

Geometry

Points (GL_POINTS)
Stored in Homogeneous coordinates

Line segments (GL_LINES)
Also (GL_LINE_STRIP, GL_LINE_LOOP)

Triangles (GL_TRIANGLES)
Also strips, fans (GL_TRIANGLE_STRIP, GL_TRIANGLE_FAN)

More complex primitives (GLUT): Sphere, teapot, cube,...
Must now be converted into triangles (which is what skeleton does)

Old OpenGL: Drawing

Enclose vertices between gIBegin() ... glEnd() pair
Can include normal C code and attributes like the colors
Inside are commands like glVertex3f, glColor3f
Attributes must be set before the vertex

Assembly line (pass vertices, transform, shade)
These are vertex, fragment shaders on current GPUs
Immediate Mode: Sent to server and drawn

Client-Server model (client generates vertices,
server draws) even if on same machine
glFlush() forces client to send network packet
glFinish() waits for ack, sparingly use synchronization

New OpenGL: Vertex Array Objects (next)

Modern OpenGL: Floor Specification

const GLfloat floorverts[4][3] =

0.5, 0.0}, {-0.5, 0.5, 0.0}, {
-0.5, 0.0}

b

const GLfloat floorcol[4][3] = {
{1.0, 0.0, 0.0}, {0.0, 1.0, 0.0}, {0.0, O.
1.0}

}oi
const GLubyte floorinds[1][6] = { {0, 1, 2, 0, 2, 3} } ; //tris
const GLfloat floorverts2[4][3] = {

{0.5, 0.5, 1.0}, {-0.5, 0.5, 1.0}, {-0.5, -0.5, 1.0}, {0.5,
-0.5, 1.0}

} o

const GLfloat floorcol2[4][3] = {
{1.0, 0.0, 0.0}, {1.0, 0.0, 0.0}, {1.0, 0.0, 0.0}, {1.0, 0.0,
0.0}

} i // all red and on top
const GLubyte floorinds2([1][6] = { {0, 1, 2, 0, 2, 3} } ; //tris

Modern OpenGL.: Initialize Buffers

void initobject (GLuint object, GLfloat * vert, GLint sizevert, GLfloat *
col, GLint sizecol, GLubyte * inds, GLint sizeind, GLenum type) {

int offset = object * numperobj;

glBindVertexArray (VAOs [object]) ;

glBindBuffer (GL_ARRAY BUFFER, buffers[Vertices+offset]) ;

glBufferData (GL_ARRAY BUFFER, sizevert, vert,GL_STATIC_DRAW) ;

// Use layout location 0 for the vertices

glEnableVertexAttribArray (0) ;

glVertexAttribPointer (0, 3, GL_FLOAT, GL_FALSE, 3 * sizeof (GLfloat), 0);
glBindBuffer (GL_ARRAY BUFFER, buffers[Colorstoffset]) ;

glBufferData (GL_ARRAY BUFFER, sizecol, col,GL_STATIC_DRAW) ;

// Use layout location 1 for the colors

glEnableVertexAttribArray (1) ;

glVertexAttribPointer (1, 3, GL FLOAT, GL_FALSE, 3 * sizeof (GLfloat), 0);
glBindBuffer (GL_ELEMENT ARRAY BUFFER, buffers[Elements+offset]) ;
nguffex‘Data(GL_ELEMENT_ARRAY_BUFFER, sizeind, inds,GL_STATIC_DRAW);
PrimType [object] = type;

NumElems[object] = sizeind;

// Prevent further modification of this VAO by unbinding it
glBindVertexArray (0) ;

Old OpenGL: Drawing (not used)

void display (void)
{
glClear (GL_COLOR BUFFER BIT) ;

// draw polygon (square) of unit length centered at the origin
// This code draws each vertex in a different color.

// The hardware will blend between them.

// This is a useful debugging trick. I make sure each vertex
// appears exactly where I expect it to appear.

Begin (GL_POLYGON) ; (-5: 5) (5, 5)
glColor3f (1.0, 0.0, 0.0);

qwvertexaz (0.5, 0.5, 0.0; GREEN RED
glColor3f (0.0, 1.0, 0.0);

glvertex3f (-0. .5,

glColor3f (0.0, 0.0

glvertex3f (-0.

glColor3f (1.0,

glE:cl;{?ftexlif (0.5, -0.5, H (_-5, _5) (5’ _5)

glFlush () ; BLUE WHITE

Modern OpenGL: Vertex Array Objects
~ const int numobjects = 2 ; // number of objects for butfer .

const int numperobj = 3 ; // Vertices, colors, indices

GLUint VAOs [numobjects] ; // A Vertex Array Object per object
GLuint buffers[numperobj] ; // List of buffers for geometric data
GLuint objects[numobjects]; // For each object

GLenum PrimType[numobjects];// Primitive Type (triangles, strips)
GLsizei NumElems[numobjects] ; // Number of geometric elements

// Floor Geometry is specified with a vertex array
enum {Vertices, Colors, Elements} ; // For arrays for object
enum {FLOOR, FLOOR2} ; // For objects, for the floor

//------In init below (creates buffer objects for later use)------
glGenVertexArrays (numobjects, VAOs); //create unique identifiers
glGenBuffers (numperobj*numobjects, buffers); //and for buffers
void deleteBuffers() { // Like a destructor

glDeleteVertexArrays (numobjects, VAOs);

glDeleteBuffers (numperobj*numobjects, buffers);}

Modern OpenGL: Draw Vertex Object

void drawobject (GLuint object) {
glBindVertexArray (VAOs [object]) ;

glDrawElements (PrimType [object] , NumElems[object],
GL_UNSIGNED_BYTE, 0);

glBindVertexArray (0) ; //unbind

void display(void) {
glClear (GL_COLOR BUFFER BIT); // clear all pixels
drawobject (FLOOR) ;
drawobject (FLOOR2)
glFlush (); // start processing buffered OpenGL commands

Initialization for Drawing, Shading

#include "shaders.h"
GLuint vertexshader, fragmentshader, shaderprogram ; // shaders

// Initialization in init() for Drawing
glGenVertexArrays (numobjects, VAOs) ;
glGenBuffers (numperobj*numobjects, buffers) ;

initobject (FLOOR, (GLfloat *) floorverts, sizeof (floorverts), (GLfloat
*) floorcol, sizeof (floorcol), (GLubyte *) floorinds, sizeof
(floorinds), GL_TRIANGLES) ;

initobject (FLOOR2, (GLfloat *) floorverts2, sizeof (floorverts2),
(GLfloat *) floorcol2, sizeof (floorcol2), (GLubyte *) floorinds2,
sizeof (floorinds2), GL_TRIANGLES) ;

// In init() for Shaders, discussed next
vertexshader = initshaders (GL_VERTEX SHADER, "shaders/nop.vert") ;

fragmentshader initshaders (GL_FRAGMENT SHADER, " shaders/nop. frag") ;

shaderprogram = initprogram(vertexshader, fragmentshader) ;

Outline

Basic idea about OpenGL

Basic setup and buffers

Matrix modes

Window system interaction and callbacks
Drawing basic OpenGL primitives

Initializing Shaders

Simplified OpenGL Pipeline

User specifies vertices (via vertex arrays)

For each vertex in parallel
OpenGL calls user-specified vertex shader:
Transform vertex (ModelView, Projection), other ops

For each primitive, OpenGL rasterizes
Generates a fragment for each pixel the fragment covers

For each fragment in parallel
OpenGL calls user-specified fragment shader:
Shading and lighting calculations
OpenGL handles z-buffer depth test unless overwritten

Modern OpenGL is “lite” basically just a rasterizer
“Real” action in user-defined vertex, fragment shaders

Demo (change colors)

Full OpenGL Pipeline

Geom:
Shader

Vertex Data
(Program)

Texture/lImage Data Final Pixel Color
(Program) (Image)

User/program generates original vertices, textures

We cover programmable vertex and fragment shaders in course
OpenGL primitive setup, clipping, rasterization not programmable
Tessellation shaders take patches (splines) to output vertices
Geometry shaders process primitives, can add/remove geometry

Shader Setup

Initializing (shader itself discussed later)
Create shader (Vertex and Fragment)
Compile shader

Attach shader to program

Link program

Use program

Shader source is just sequence of strings

Similar steps to compile a normal program

Shader Initialization Code

GLuint initshaders (GLenum type, const char *filename) {
// Using GLSL shaders, OpenGL book, page 679 of 7t" edition
GLuint shader = glCreateShader (type) ;

GLint compiled ;
string str = textFileRead (filename) ;
const GLchar * cstr = str.c_str() ;
glshaderSource (shader, 1, &cstr, NULL) ;
glCompileShader (shader) ;
glGetShaderiv (shader, GL COMPILE STATUS, &compiled) ;
if (!compiled) {
shadererrors (shader) ;
throw 3 ;
}

cout<<"Shader file " <<filename<<" successfully compiled.”<<endl;

return shader ;

}

Basic (nop) vertex shader

In shaders/ nop.vert.glsl nop.frag.glsl
Written in GLSL (GL Shading Language
Vertex Shader (out values interpolated to fragment)

version 330 core

// Do not modify the above version directive to anything older.

// Shader inputs

layout (location = 0) in vec3 position;
layout (location = 1) in vec3 color;

// Shader outputs, if any

out vec3 Color;

// Uniform variables

uniform matd modelview;

uniform mat4 projection;

void main() {
gl_Position = projection * modelview * vecd (position, 1.0f);

Color = color; // Just forward this color to the fragment shader

Linking Shader Program

GLuint initprogram (GLuint vertexshader, GLuint fragmentshader)

{
GLuint program = glCreateProgram() ;
GLint linked ;
glattachShader (program, vertexshader) ;
glattachShader (program, fragmentshader) ;
glLinkProgram(program) ;
glGetProgramiv (program, GL_LINK_STATUS, &linked) ;
if (linked) glUseProgram(program) ;
else {
programerrors (program) ;
throw 4 ;
}
cout<<"Shader program successfully attached and linked

return program ;

Basic (nop) fragment shader

version 330 core

// Do not modify the version directive to anything older than 330.

// Fragment shader inputs are outputs of same name from vertex shader

in vec3 Color;

// Uniform variables (none)

// Output

out vecd fragColor;

void main (void)
{
fragColor = vec4 (Color, 1.0f);

