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Computer Graphics 

CSE 167 [Win 17], Lecture 5: Viewing 

Ravi Ramamoorthi 

http://viscomp.ucsd.edu/classes/cse167/wi17 

To Do 

§  Questions/concerns about assignment 1? 

§  Remember it is due Jan 30.  Ask me or TAs re problems 

Motivation 

§  We have seen transforms (between coord systems) 

§  But all that is in 3D 

§  We still need to make a 2D picture 

§  Project 3D to 2D.  How do we do this? 

§  This lecture is about viewing transformations 

Demo (Projection Tutorial) 
§  Nate Robbins OpenGL                                                                      

tutors 

§  Projection tutorial 

§  Download others 

What we’’ve seen so far 
§  Transforms (translation, rotation, scale) as 4x4 

homogeneous matrices 

§  Last row always 0 0 0 1.  Last w component always 1 

§  For viewing (perspective), we will use that last row 
and w component no longer 1 (must divide by it) 

Outline 

§  Orthographic projection (simpler) 

§  Perspective projection, basic idea  

§  Derivation of gluPerspective (handout: glFrustum) 

§  Brief discussion of nonlinear mapping in z 
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Projections 

§  To lower dimensional space (here 3D -> 2D) 

§  Preserve straight lines 

§  Trivial example: Drop one coordinate (Orthographic) 

Orthographic Projection 

§  Characteristic: Parallel lines remain parallel 

§  Useful for technical drawings etc. 

 

Orthographic Perspective 

Example 

§  Simply project onto xy plane, drop z coordinate 

In general 
§  We have a cuboid that we want to map to the 

normalized or square cube from [-1, +1] in all axes 

§  We have parameters of cuboid (l,r ; t,b; n,f) 
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Orthographic Matrix 
§  First center cuboid by translating 

§  Then scale into unit cube 

x 

z 

y 

l r 

t 

b 
n 

f 

x 

z 

Translate 

y 

x 

z 

y 

Scale 

Transformation Matrix 
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Scale Translation (centering) 
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Caveats 
§  Looking down –z, f and n are negative (n > f) 

§  OpenGL convention: positive n, f, negate internally 
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Final Result 
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Outline 

§  Orthographic projection (simpler) 

§  Perspective projection, basic idea  

§  Derivation of gluPerspective (handout: glFrustum) 

§  Brief discussion of nonlinear mapping in z 

Perspective Projection 

§  Most common computer graphics, art, visual system 

§  Further objects are smaller (size, inverse distance) 

§  Parallel lines not parallel; converge to single point 

 

B 

A’ 

B’ 
Center of projection 

(camera/eye location) 

A 
Plane of Projection 

Slides inspired by Greg Humphreys  

Overhead View of Our Screen 

Looks like we’ve got some nice similar triangles here? 
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In Matrices 

§  Note negation of z coord (focal plane –d) 

§  (Only) last row affected (no longer 0 0 0 1) 

§  w coord will no longer = 1.  Must divide at end  
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Verify 
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Outline 

§  Orthographic projection (simpler) 

§  Perspective projection, basic idea  

§  Derivation of gluPerspective (handout: glFrustum) 

§  Brief discussion of nonlinear mapping in z 

Remember projection tutorial Viewing Frustum 

Near plane 

Far plane 

Screen (Projection Plane) 

Field of view 
(fovy) 

width 

height 

Aspect ratio = width / height 

gluPerspective 

§  gluPerspective(fovy, aspect, zNear > 0, zFar > 0) 

§  Fovy, aspect control fov in x, y directions 

§  zNear, zFar control viewing frustum 
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Overhead View of Our Screen 

  θ = ? d = ?

  ′x , ′y ,d( )   
x,y,z( )

 d
 
0,0,0( )

  
θ = fovy

2
d = cotθ

In Matrices 

§  Simplest form:  

§  Aspect ratio taken into account 

§  Homogeneous, simpler to multiply through by d 

§  Must map z vals based on near, far planes (not yet) 
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In Matrices 

§  A and B selected to map n and f to -1, +1 respectively 
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Z mapping derivation 

§  Simultaneous equations? 
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Outline 

§  Orthographic projection (simpler) 

§  Perspective projection, basic idea  

§  Derivation of gluPerspective (handout: glFrustum) 

§  Brief discussion of nonlinear mapping in z 

Mapping of Z is nonlinear 

§  Many mappings proposed: all have nonlinearities 

§  Advantage: handles range of depths (10cm – 100m) 

§  Disadvantage: depth resolution not uniform 

§  More close to near plane, less further away 

§  Common mistake: set near = 0, far = infty.  Don’t do 
this.  Can’t set near = 0; lose depth resolution. 

§  We discuss this more in review session 
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Summary: The Whole Viewing Pipeline 

Model 
transformation 

Camera 
Transformation 

(gluLookAt) 

Perspective 
Transformation 
(gluPerspective) 

Viewport 
transformation 

Raster 
transformation 

Model coordinates 

World coordinates 

Eye coordinates 

Screen coordinates 

Window coordinates 

Device coordinates 

Slide courtesy Greg Humphreys 


