
1

Computer Graphics

CSE 167 [Win 17], Lectures 16, 17:

Nuts and bolts of Ray Tracing

Ravi Ramamoorthi
http://viscomp.ucsd.edu/classes/cse167/wi17

Acknowledgements: Thomas Funkhouser and Greg Humphreys

Heckbert’’s Business Card Ray Tracer

Outline

§  Camera Ray Casting (choose ray directions)

§  Ray-object intersections

§  Ray-tracing transformed objects

§  Lighting calculations

§  Recursive ray tracing

Outline in Code
Image Raytrace (Camera cam, Scene scene, int width, int height)
{

 Image image = new Image (width, height) ;

 for (int i = 0 ; i < height ; i++)

 for (int j = 0 ; j < width ; j++) {

 Ray ray = RayThruPixel (cam, i, j) ;
 Intersection hit = Intersect (ray, scene) ;

 image[i][j] = FindColor (hit) ;

 }

 return image ;

}

Ray Casting

Virtual Viewpoint

Virtual Screen Objects

Ray misses all objects: Pixel colored black Ray intersects object: shade using color, lights, materials Multiple intersections: Use closest one (as does OpenGL)

Finding Ray Direction

§  Goal is to find ray direction for given pixel i and j

§  Many ways to approach problem
§  Objects in world coord, find dirn of each ray (we do this)
§  Camera in canonical frame, transform objects (OpenGL)

§  Basic idea
§  Ray has origin (camera center) and direction
§  Find direction given camera params and i and j

§  Camera params as in gluLookAt
§  Lookfrom[3], LookAt[3], up[3], fov

2

Similar to gluLookAt derivation
§  gluLookAt(eyex, eyey, eyez, centerx, centery, centerz, upx,

upy, upz)

§  Camera at eye, looking at center, with up direction being up

Eye

Up vector

Center
From earlier lecture on deriving gluLookAt

Constructing a coordinate frame?

We want to associate w with a, and v with b
§  But a and b are neither orthogonal nor unit norm
§  And we also need to find u

u = b ×w

b ×w

 v = w × u

w = a

a

From basic math lecture - Vectors: Orthonormal Basis Frames

Camera coordinate frame

§  We want to position camera at origin, looking down –Z dirn

§  Hence, vector a is given by eye – center

§  The vector b is simply the up vector

u = b ×w

b ×w v = w × u

Eye

Up vector

Center

w = a

a

Canonical viewing geometry

-w αu

βv

α = tan fovx

2
⎛
⎝⎜

⎞
⎠⎟
× j − (width / 2)

width / 2
⎛
⎝⎜

⎞
⎠⎟

β = tan fovy
2

⎛
⎝⎜

⎞
⎠⎟
× (height / 2)− i

height / 2
⎛
⎝⎜

⎞
⎠⎟

ray = eye + αu + βv −w

αu + βv −w

Outline

§  Camera Ray Casting (choosing ray directions)

§  Ray-object intersections

§  Ray-tracing transformed objects

§  Lighting calculations

§  Recursive ray tracing

Outline in Code
Image Raytrace (Camera cam, Scene scene, int width, int height)
{

 Image image = new Image (width, height) ;

 for (int i = 0 ; i < height ; i++)

 for (int j = 0 ; j < width ; j++) {

 Ray ray = RayThruPixel (cam, i, j) ;

 Intersection hit = Intersect (ray, scene) ;
 image[i][j] = FindColor (hit) ;

 }

 return image ;

}

3

Ray-Sphere Intersection

ray ≡

P =


P0 +


P1t

sphere ≡ (

P −

C) i (


P −

C)− r 2 = 0

C

P0

Ray-Sphere Intersection

ray ≡

P =


P0 +


P1t

sphere ≡ (

P −

C) i (


P −

C)− r 2 = 0

Substitute

ray ≡

P =


P0 +


P1t

sphere ≡ (

P0 +


P1t −


C) i (


P0 +


P1t −


C)− r 2 = 0

Simplify

 t
2(

P1 i

P1)+ 2t


P1 i (


P0 −


C)+ (


P0 −


C) i (


P0 −


C)− r 2 = 0

Ray-Sphere Intersection

 t
2(

P1 i

P1)+ 2t


P1 i (


P0 −


C)+ (


P0 −


C) i (


P0 −


C)− r 2 = 0

Solve quadratic equations for t

§  2 real positive roots: pick smaller root

§  Both roots same: tangent to sphere

§  One positive, one negative root: ray
origin inside sphere (pick + root)

§  Complex roots: no intersection (check
discriminant of equation first)

Ray-Sphere Intersection

§  Intersection point:

§  Normal (for sphere, this is same as coordinates
in sphere frame of reference, useful other tasks)

 ray ≡

P =


P0 +


P1t

normal =

P −

C


P −

C

Ray-Triangle Intersection

§  One approach: Ray-Plane intersection, then
check if inside triangle

§  Plane equation:
A

B

C

n = (C − A)× (B − A)

(C − A)× (B − A)

 plane ≡

P i

n −

A i

n = 0

Ray-Triangle Intersection

§  One approach: Ray-Plane intersection, then
check if inside triangle

§  Plane equation:

§  Combine with ray equation:

A
B

C

n = (C − A)× (B − A)

(C − A)× (B − A)

 plane ≡

P i

n −

A i

n = 0

ray ≡

P =


P0 +


P1t

(

P0 +


P1t) i


n =

A i

n

t =

A i

n −

P0 i

n

P1 i

n

4

Ray inside Triangle
§  Once intersect with plane, still need to find if in

triangle

§  Many possibilities for triangles, general polygons
(point in polygon tests)

§  We find parametrically [barycentric coordinates]. Also
useful for other applications (texture mapping)

A
B

C

P
α β

γ

P = αA+ βB + γC
α ≥ 0,β ≥ 0,γ ≥ 0
α + β + γ = 1

Ray inside Triangle

A
B

C

P
α β

γ

P = αA+ βB + γC
α ≥ 0,β ≥ 0,γ ≥ 0
α + β + γ = 1

 P − A = β(B − A)+ γ (C − A)

0 ≤ β ≤1 , 0 ≤ γ ≤1
β + γ ≤1

Other primitives

§  Much early work in ray tracing focused on ray-
primitive intersection tests

§  Cones, cylinders, ellipsoids

§  Boxes (especially useful for bounding boxes)

§  General planar polygons

§  Many more

§  Consult chapter in Glassner (handed out) for
more details and possible extra credit

Ray Scene Intersection

Outline

§  Camera Ray Casting (choosing ray directions)

§  Ray-object intersections

§  Ray-tracing transformed objects

§  Lighting calculations

§  Recursive ray tracing

Transformed Objects

§  E.g. transform sphere into ellipsoid

§  Could develop routine to trace ellipsoid
(compute parameters after transformation)

§  May be useful for triangles, since triangle after
transformation is still a triangle in any case

§  But can also use original optimized routines

5

Ray-Tracing Transformed Objects

We have an optimized ray-sphere test
§  But we want to ray trace an ellipsoid…

Solution: Ellipsoid transforms sphere
§  Apply inverse transform to ray, use ray-sphere
§  Allows for instancing (traffic jam of cars)
§  Same idea for other primitives

Transformed Objects

§  Consider a general 4x4 transform M
§  Will need to implement matrix stacks like in OpenGL

§  Apply inverse transform M-1 to ray
§  Locations stored and transform in homogeneous

coordinates
§  Vectors (ray directions) have homogeneous coordinate

set to 0 [so there is no action because of translations]

§  Do standard ray-surface intersection as modified

§  Transform intersection back to actual coordinates
§  Intersection point p transforms as Mp
§  Distance to intersection if used may need recalculation
§  Normals n transform as M-tn. Do all this before lighting

Outline

§  Camera Ray Casting (choosing ray directions)

§  Ray-object intersections

§  Ray-tracing transformed objects

§  Lighting calculations

§  Recursive ray tracing

Outline in Code
Image Raytrace (Camera cam, Scene scene, int width, int height)
{

 Image image = new Image (width, height) ;

 for (int i = 0 ; i < height ; i++)

 for (int j = 0 ; j < width ; j++) {

 Ray ray = RayThruPixel (cam, i, j) ;

 Intersection hit = Intersect (ray, scene) ;

 image[i][j] = FindColor (hit) ;
 }

 return image ;

}

Shadows

Virtual Viewpoint

Virtual Screen Objects

Light Source

Shadow ray to light is unblocked: object visible Shadow ray to light is blocked: object in shadow

Shadows: Numerical Issues
  Numerical inaccuracy may cause intersection to be

 below surface (effect exaggerated in figure)

  Causing surface to incorrectly shadow itself
  Move a little towards light before shooting shadow ray

6

Lighting Model

§  Similar to OpenGL

§  Lighting model parameters (global)
§  Ambient r g b
§  Attenuation const linear quadratic

§  Per light model parameters
§  Directional light (direction, RGB parameters)
§  Point light (location, RGB parameters)
§  Some differences from HW 2 syntax

L =

L0

const + lin* d + quad * d 2

Material Model

§  Diffuse reflectance (r g b)

§  Specular reflectance (r g b)

§  Shininess s

§  Emission (r g b)

§  All as in OpenGL

Shading Model

§  Global ambient term, emission from material

§  For each light, diffuse specular terms

§  Note visibility/shadowing for each light (not in OpenGL)

§  Evaluated per pixel per light (not per vertex)

I = Ka +Ke + Vi

i=1

n

∑ Li (Kd max (li i n,0)+Ks(max(hi i n,0))s)

Outline

§  Camera Ray Casting (choosing ray directions)

§  Ray-object intersections

§  Ray-tracing transformed objects

§  Lighting calculations

§  Recursive ray tracing

Mirror Reflections/Refractions

Virtual Viewpoint

Virtual Screen Objects
Generate reflected ray in mirror direction,
Get reflections and refractions of objects

Turner Whitted 1980

7

Basic idea

For each pixel
§  Trace Primary Eye Ray, find intersection

§  Trace Secondary Shadow Ray(s) to all light(s)
§  Color = Visible ? Illumination Model : 0 ;

§  Trace Reflected Ray
§  Color += reflectivity * Color of reflected ray

Recursive Shading Model

§  Highlighted terms are recursive specularities [mirror
reflections] and transmission (latter is extra credit)

§  Trace secondary rays for mirror reflections and
refractions, include contribution in lighting model

§  GetColor calls RayTrace recursively (the I values in
equation above of secondary rays are obtained by
recursive calls)

I = Ka +Ke + Vi

i=1

n

∑ Li (Kd max (li i n,0)+Ks(max(hi i n,0))s)+KsIR +KTIT

Problems with Recursion

§  Reflection rays may be traced forever

§  Generally, set maximum recursion depth

§  Same for transmitted rays (take refraction into account)

Effects needed for Realism
  (Soft) Shadows
  Reflections (Mirrors and Glossy)
  Transparency (Water, Glass)
  Interreflections (Color Bleeding)
  Complex Illumination (Natural, Area Light)
  Realistic Materials (Velvet, Paints, Glass)

Discussed in this lecture so far
Not discussed but possible with distribution ray tracing
Hard (but not impossible) with ray tracing; radiosity methods

Some basic add ons

§  Area light sources and soft shadows: break into
grid of n x n point lights
§  Use jittering: Randomize direction of shadow ray

within small box for given light source direction
§  Jittering also useful for antialiasing shadows when

shooting primary rays

§  More complex reflectance models
§  Simply update shading model
§  But at present, we can handle only mirror global

illumination calculations

Acceleration

Testing each object for each ray is slow
§  Fewer Rays

Adaptive sampling, depth control
§  Generalized Rays

Beam tracing, cone tracing, pencil tracing etc.
§  Faster Intersections

§  Optimized Ray-Object Intersections
§  Fewer Intersections

8

Acceleration Structures

Bounding boxes (possibly hierarchical)
 If no intersection bounding box, needn’t check objects

Bounding Box

Ray

Spatial Hierarchies (Oct-trees, kd trees, BSP trees)

Bounding Volume Hierarchies 1

Bounding Volume Hierarchies 2 Bounding Volume Hierarchies 3

Acceleration Structures: Grids Uniform Grid: Problems

9

Octree Octree traversal

Other Accelerations Ray Tracing Acceleration Structures

§  Bounding Volume Hierarchies (BVH)

§  Uniform Spatial Subdivision (Grids)

§  Binary Space Partitioning (BSP Trees)
§  Axis-aligned often for ray tracing: kd-trees

§  Conceptually simple, implementation a bit tricky
§  Lecture relatively high level: Start early, go to section
§  Remember that acceleration a small part of grade

Math of 2D Bounding Box Test

§  Can you find a t in range

 txmax

 txmin

ty min

ty max

t > 0
txmin ≤ t ≤ txmax

ty min ≤ t ≤ ty max

No intersection if x and y ranges don’t overlap

 txmin txmax
ty min

ty max

if txmin > ty max ORty min > txmax

returnfalse;
else

returntrue;

Bounding Box Test

§  Ray-Intersection is simple coordinate check

§  Intricacies with test, see book

§  Hierarchical Bounding Boxes

Ray

10

Hierarchical Bounding Box Test

§  If ray hits root box
§  Intersect left subtree
§  Intersect right subtree
§  Merge intersections (find closest one)

§  Standard hierarchical traversal
§  But caveat, since bounding boxes may overlap

§  At leaf nodes, must intersect objects

Creating Bounding Volume Hierarchy

function bvh-node::create (object array A, int AXIS)
N = A.length() ;
if (N == 1) {left = A[0]; right = NULL; bbox = bound(A[0]);}
else if (N == 2) {

left = A[0] ; right = A[1] ;
bbox = combine(bound(A[0]),bound(A[1])) ;

else
Find midpoint m of bounding box of A along AXIS
Partition A into lists of size k and N-k around m
left = new bvh-node (A[0…k],(AXIS+1) mod 3) ;
right = new bvh-node(A[k+1…N-1],(AXIS+1) mod 3);
bbox = combine (left -> bbox, right -> bbox) ;

From page 285 of book

Uniform Spatial Subdivision

§  Different idea: Divide space rather than objects

§  In BVH, each object is in one of two sibling nodes
§  A point in space may be inside both nodes

§  In spatial subdivision, each space point in one node
§  But object may lie in multiple spatial nodes

§  Simplest is uniform grid (have seen this already)

§  Challenge is keeping all objects within cell

§  And in traversing the grid

Traversal of Grid High Level

§  Next Intersect Pt?

§  Irreg. samp. pattern?

§  But regular in planes

§  Fast algo. possible

§  (more on board)

BSP Trees

§  Used for visibility and ray tracing
§  Book considers only axis-aligned splits for ray tracing
§  Sometimes called kd-tree for axis aligned

§  Split space (binary space partition) along planes

§  Fast queries and back-to-front (painter’s) traversal

§  Construction is conceptually simple
§  Select a plane as root of the sub-tree
§  Split into two children along this root
§  Random polygon for splitting plane (may need to split

polygons that intersect it)

BSP slides courtesy Prof. O’Brien

Initial State

11

First Split Second Split

Third Split Fourth Split

Final BSP Tree BSP Trees Cont’’d

§  Continue splitting until leaf nodes

§  Visibility traversal in order
§  Child one
§  Root
§  Child two

§  Child one chosen based on viewpoint
§  Same side of sub-tree as viewpoint

§  BSP tree built once, used for all viewpoints
§  More details in book

12

Interactive Raytracing

§  Ray tracing historically slow

§  Now viable alternative for complex scenes
§  Key is sublinear complexity with acceleration;

need not process all triangles in scene

§  Allows many effects hard in hardware

§  Today graphics hardware (NVIDIA Optix)

Raytracing on Graphics Hardware

§  Modern Programmable Hardware general
streaming architecture

§  Can map various elements of ray tracing

§  Kernels like eye rays, intersect etc.

§  In vertex or fragment programs

§  Convergence between hardware, ray tracing

[Purcell et al. 2002, 2003]

http://graphics.stanford.edu/papers/photongfx

