Heckbert’ s Business Card Ray Tracer

Com puter G raphics typedef struct{double x.y zjvecvec U black amb={.02,.02,02}:struct sphere{ vec cen,color
doublcradkdksklkhr] s, bcslsph[):{O 6..51.1.1..9, 05,2,850.,1.7-1.8.-51..5,.2,1,
7.30.05121.8 8,8,1..3.7,0.0.,123.6,15.,1.81.,7.0.0.0..6,15,3.-3.,12,,

H 5 A | double v, b tmin,sqrt().tan():double vdot(A.Bjvec A B:{return A.x
CSE 167 [Wm 1 7]’ Lectures 1 6’ 17: ‘Bx+Ay'By+AZ" B vec vcomb(a A, B)double a;vec A B{B.x+=a’ AxBy+=a'AyBz+=a'Az;
return B:jvec vunit(Ajvec A{return veomb(1 /sqrt(vdot(A A)).A black);}struct sphere’intersect
(P.Djvec P,D;{best=0;tmin=1e30;s= sph+5;while(s->sphjo=vdot(D, U=vcomb(-1.,P,s->cen)),
. . u=b"b-vdot{U,U)+s->rad’s ->rad u=u>0?sqrt(u):1631,u=b-u>18-77b-u:b+u tmin=u>=18-7&&
Ravi Ramamoorthi u<tmin?best=s,u: tmin:return best;jvec trace(level,P,Djvec P,D:{double d.eta e;vec N.color;

X . struct sphere’s, 'Lif(level--Jreturn black:if(s=intersect(P,D));else return amb:color=amb;eta=
http://viscomp.ucsd.edu/classes/cse167/wil7 $+5ir:d= vdol(D,N=vunitivcomb(-1.,P=vcombitmin,D,P).s->cen)if(d<0)N=vcomb(-1. N black),
ela=1/eta,d= d‘l_spms while(l-->sph)if((e=1 ->kI*'vdot(N,U=vunit(vcomb(-1.,P,|->cen))))>0&&
intersect(P,U)= combl(e ,l->color,color).U=s->colorcolor.x*=U.x:color.y*=U.y.color.z

‘zU.z;e=1-eta’ eta’(1-d'd);retum vcomb(s->kl,e>0%trace(level,P vcomb(eta D,vcomb(eta‘d-
sqrt (e),N,black)))-black,vcomby(s->ks trace(level,P.vcomb(2°d,N,D)).vcomb{s->kd, color,vcomb
(s->k1.U,black)))}:;Jmain(}printf(*%5d %5d\n" 32,32):while(yx<32°32) U.x=yx%:32-32/2,U.2=32/2-
yx++32,U.y=32/2/tan(25/114.5215590261),U=vcomb(255., trace(3,black vunil(V)) black),printf
("2%6.0f %.0f %.0f\n",U);}/*minray!"/

Nuts and bolts of Ray Tracing

Acknowledgements: Thomas Funkhouser and Greg Humphreys

Outline Outline in Code

Image Raytrace (Camera cam, Scene scene, int width, int height)

Camera Ray Casting (choose ray directions) (

Ray-object intersections Image image = new Image (width, height) ;

Ray-tracing transformed objects for (inti =0 i< height ; i++)
Lighting calculations Lk = 0 < wiiin §ffrer)
. . Ray ray = RayThruPixel (cam, i, j) ;
Recursive ray tracing : .
Intersection hit = Intersect (ray, scene) ;
imageli][j] = FindColor (hit) ;
}

return image ;

Ray Casting Finding Ray Direction

Goal is to find ray direction for given pixel i and j

Many ways to approach problem
Obijects in world coord, find dirn of each ray (we do this)
Camera in canonical frame, transform objects (OpenGL)

Basic idea
Ray has origin (camera center) and direction
Find direction given camera params and i and j

Virtual Viewpoint

Camera params as in gluLookAt

Lookfs 3], LookAt[3 3], fi
Virtual Screen Objects ookfrom(3], LookAl[3], up[3], fov

Similar to gluLookAt derivation

gluLookAt(eyex, eyey, eyez, centerx, centery, centerz, upx,
upy, upz)

Camera at eye, looking at center, with up direction being up

Up vector

From earlier lecture on deriving gluLookAt

Camera coordinate frame

a bxw
_— U= ——
&l [loxw]

We want to position camera at origin, looking down —Z dirn

w= V=wXxu

Hence, vector a is given by eye — center

The vector b is simply the up vector
Up vector

Outline

Camera Ray Casting (choosing ray directions)
Ray-object intersections

Ray-tracing transformed objects

Lighting calculations

Recursive ray tracing

Constructing a coordinate frame?

We want to associate w with a, and v with b
But a and b are neither orthogonal nor unit norm
And we also need to find u

a
W=r—r

5

bxw
u= 22
[loxw|

V=wXu

From basic math lecture - Vectors: Orthonormal Basis Frames

Canonical viewing geometry

o=t X[EOID)] B | (oI

2) width/2 2 height / 2

Outline in Code

Image Raytrace (Camera cam, Scene scene, int width, int height)
{
Image image = new Image (width, height) ;
for (inti=0;i<height; i++)
for (intj =0 ;j < width ; j++) {
Ray ray = RayThruPixel (cam, i, j) ;
Intersection hit = Intersect (ray, scene) ;
imageli][j] = FindColor (hit) ;
}

return image ;

Ray-Sphere Intersection

ray =P=P+Pt
sphere=(P-C)+(P-C)-r?=0

Ray-Sphere Intersection
t2(P+P)+2t P,+«(P,~C)+(P,~C)+(P,~C)-r*=0

Solve quadratic equations for t

2 real positive roots: pick smaller roo

Both roots same: tangent to sphere /C)

One positive, one negative root: ray

origin inside sphere (pick + root) @
ck

Complex roots: no intersection (che

discriminant of equation first) /C)

Ray-Triangle Intersection

One approach: Ray-Plane intersection, then
check if inside triangle

Plane equation:

Ray-Sphere Intersection

ray =P=P+Pt
sphere=(P-C)«(P-C)-r?=0
Substitute

Slmpllfy

t2(P,+P)+2t PB,«(P,—C)+(P,~C)+(P,-C)-r*=0

Ray-Sphere Intersection

Intersection point: ray = P= 150 A I51t

Normal (for sphere, this is same as coordinates

in sphere frame of reference, useful other tasks)
p-C

normal = ——
P-C

Ray-Triangle Intersection

One approach: Ray-Plane intersection, then
check if inside triangle

Plane equation:

plane=Pfi—A+i=0
Combine with ray equation:

Ray inside Triangle

Once intersect with plane, still need to find if in
triangle

Many possibilities for triangles, general polygons

(point in polygon tests)

We find parametrically [barycentric coordinates]. Also

useful for other applications (texture mapping)

B
P=aA+pB+yC

20,420,y 20
o+B+y=1

Other primitives

Much early work in ray tracing focused on ray-

primitive intersection tests

Cones, cylinders, ellipsoids

Boxes (especially useful for bounding boxes)
General planar polygons

Many more

Consult chapter in Glassner (handed out) for
more details and possible extra credit

Outline

Camera Ray Casting (choosing ray directions)

Ray-object intersections
Ray-tracing transformed objects
Lighting calculations

Recursive ray tracing

Ray inside Triangle

B P=aA+pB+yC
20,20,y2>0
o+f+y=1

P-A=B(B-A)+y(C-A)
0<pB<1,0<y<1
B+y <1

Ray Scene Intersection

Intersection FindIntersection(Ray ray, Scene scene)

min_t = infinity

P
min_primitive = NULL \=/
For each primitive in scene | A}

\

t = Intersect(ray, primitive):

if (>0 && t< min_t) then
min_primitive = primitive
min_t=t

i

retum Intersection(min_t, min_primitive)

Transformed Objects

E.g. transform sphere into ellipsoid

Could develop routine to trace ellipsoid
(compute parameters after transformation)

May be useful for triangles, since triangle after
transformation is still a triangle in any case

But can also use original optimized routines

Ray-Tracing Transformed Objects
We have an optimized ray-sphere test
But we want to ray trace an ellipsoid...

Solution: Ellipsoid transforms sphere
Apply inverse transform to ray, use ray-sphere
Allows for instancing (traffic jam of cars)
Same idea for other primitives

Outline

Camera Ray Casting (choosing ray directions)
Ray-object intersections

Ray-tracing transformed objects

Lighting calculations

Recursive ray tracing

Light Source

Virtual Viewpoint

Virtual Screen Objects
Shatiow g yddifiphisiattibeked: objecthiizibhadow

Transformed Objects

Consider a general 4x4 transform M
Will need to implement matrix stacks like in OpenGL

Apply inverse transform M-! to ray
Locations stored and transform in homogeneous
coordinates
Vectors (ray directions) have homogeneous coordinate
set to 0 [so there is no action because of translations]

Do standard ray-surface intersection as modified

Transform intersection back to actual coordinates
Intersection point p transforms as Mp
Distance to intersection if used may need recalculation
Normals n transform as M-n. Do all this before lighting

Outline in Code

Image Raytrace (Camera cam, Scene scene, int width, int height)

Image image = new Image (width, height) ;
for (inti=0;i<height; i++)
for (intj=0;j < width ; j++) {
Ray ray = RayThruPixel (cam, i, j) ;
Intersection hit = Intersect (ray, scene) ;
imagel[i][j] = FindColor (hit) ;
}

return image ;

Shadows: Numerical Issues

* Numerical inaccuracy may cause intersection to be
below surface (effect exaggerated in figure)

¢ Causing surface to incorrectly shadow itself
» Move a little towards light before shooting shadow ray

x

Lighting Model

Similar to OpenGL

Lighting model parameters (global)
Ambientrgb
Attenuation const linear quadratic
— L“
" const+lin*d+ quad *d*

Per light model parameters
Directional light (direction, RGB parameters)
Point light (location, RGB parameters)
Some differences from HW 2 syntax

Shading Model

I=K,+K,+Y, L(K,max (l/,+n0)+K_ (max(h +n,0))°)
i=1

Global ambient term, emission from material
For each light, diffuse specular terms
Note visibility/shadowing for each light (not in OpenGL)

Evaluated per pixel per light (not per vertex)

Mirror Reflections/Refractions

Virtual Viewpoint

Virtual Screen Objects
Generate reflected ray in mirror direction,
Get reflections and refractions of objects

Material Model

Diffuse reflectance (r g b)
Specular reflectance (r g b)
Shininess s

Emission (r g b)

All as in OpenGL

Outline

Camera Ray Casting (choosing ray directions)
Ray-object intersections

Ray-tracing transformed objects

Lighting calculations

Recursive ray tracing

Turner Whitted 1980

Basic idea

For each pixel
Trace Primary Eye Ray, find intersection

Trace Secondary Shadow Ray(s) to all light(s)
Color = Visible ? lllumination Model : 0 ;

Trace Reflected Ray
Color += reflectivity * Color of reflected ray

Problems with Recursion

Reflection rays may be traced forever
Generally, set maximum recursion depth

Same for transmitted rays (take refraction into account)

Some basic add ons

Area light sources and soft shadows: break into
grid of n x n point lights
Use jittering: Randomize direction of shadow ray
within small box for given light source direction
Jittering also useful for antialiasing shadows when
shooting primary rays

More complex reflectance models
Simply update shading model
But at present, we can handle only mirror global
illumination calculations

Recursive Shading Model

I=K,+K, + 2 L (K, max (I, «n,0)+ K (max(h, - n,0))*) +
i=1

Highlighted terms are recursive specularities [mirror
reflections] and transmission (latter is extra credit)

Trace secondary rays for mirror reflections and
refractions, include contribution in lighting model

GetColor calls RayTrace recursively (the | values in
equation above of secondary rays are obtained by
recursive calls)

Effects needed for Realism

(Soft) Shadows

Reflections (Mirrors and Glossy)
Transparency (Water, Glass)
Interreflections (Color Bleeding)

Complex lllumination (Natural, Area Light)
Realistic Materials (Velvet, Paints, Glass)

Discussed in this lecture so far
Not discussed but possible with distribution ray tracing
Hard (but not impossible) with ray tracing; radiosity methods

Acceleration

Testing each object for each ray is slow
Fewer Rays
Adaptive sampling, depth control
Generalized Rays
Beam tracing, cone tracing, pencil tracing etc.
Faster Intersections
Optimized Ray-Object Intersections
Fewer Intersections

Acceleration Structures

Bounding boxes (possibly hierarchical)
If no intersection bounding box, needn’t check objects

Bounding Box

Spatial Hierarchies (Oct-trees, kd trees, BSP trees)

Bounding Volume Hierarchies 2

+ Use hierarchy to accelerate ray intersections
> Intersect node contents only if hit bounding volume

Acceleration Structures: Grids

Bounding Volume Hierarchies 1

« Build hierarchy of bounding volumes
= Bounding volume of interior node contains all children

Bounding Volume Hierarchies 3

« Sort hits & detect early termination

FindIntersection(Ray ray. Node node)
Find intersections with child node bounding volumes
Sort intersections front to back

Process intersections (checking for carly termination)
min_t = infinity:
for each intersected child i {
if (min_t < bv_t[i]) break:
shape_t = FindIntersection(ray, child):
if' (shape_t < min_t) { min_t= shape_t:}

retum min_t:

Uniform Grid: Problems

+ Potential problem:
= How choose suitable grid resolution?

Too little benefit
if grid is too coarse

Too much cost
if grid is too fine

Octree

+ Construct adaptive grid over scene
> Recursively subdivide box-shaped cells into 8 octants
o Index primitives by overlaps with cells

Generally fewer cells |

Other Accelerations

Screen space coherence
> Check last hit first
o Beam tracing
o Pencil tracing
- Cone tracing

e o o

+ Memory coherence
o Large scenes

Parallelism
o Ray casting is “embarassingly parallelizable”

+ efc.

Math of 2D Bounding Box Test

5 q y max
Can you find a t in range

t>0
txmin
1

tymin £ 1 1t
1 1
ift, >t ORt >t / .
xmin ymax ymin xmax . |
I

returnfalse; tr
xmin

else t

xmin Xxmax ymin "ymax
returntrue; _—

No intersection if x and y ranges don’ t overlap

Octree traversal

« Trace rays through neighbor cells
o Fewer cells
o More complex neighbor finding

Trade-off fewer cells for
more expensive traversal

Ray Tracing Acceleration Structures

Bounding Volume Hierarchies (BVH)
Uniform Spatial Subdivision (Grids)

Binary Space Partitioning (BSP Trees)
Axis-aligned often for ray tracing: kd-trees

Conceptually simple, implementation a bit tricky
Lecture relatively high level: Start early, go to section
Remember that acceleration a small part of grade

Bounding Box Test

Ray-Intersection is simple coordinate check
Intricacies with test, see book

Hierarchical Bounding Boxes

Hierarchical Bounding Box Test

If ray hits root box
Intersect left subtree
Intersect right subtree
Merge intersections (find closest one)

Standard hierarchical traversal
But caveat, since bounding boxes may overlap

At leaf nodes, must intersect objects

Uniform Spatial Subdivision

Different idea: Divide space rather than objects

In BVH, each object is in one of two sibling nodes
A point in space may be inside both nodes

In spatial subdivision, each space point in one node
But object may lie in multiple spatial nodes

Simplest is uniform grid (have seen this already)
Challenge is keeping all objects within cell

And in traversing the grid

BSP Trees

Used for visibility and ray tracing
Book considers only axis-aligned splits for ray tracing
Sometimes called kd-tree for axis aligned

Split space (binary space partition) along planes
Fast queries and back-to-front (painter’ s) traversal

Construction is conceptually simple
Select a plane as root of the sub-tree
Split into two children along this root
Random polygon for splitting plane (may need to split
polygons that intersect it)

BSP slides courtesy Prof. O’ Brien

Creating Bounding Volume Hierarchy

function bvh-node::create (object array A, int AXIS)
N = A.length() ;
if (N == 1) {left = A[O]; right = NULL; bbox = bound(A[0]);}
else if (N == 2) {
left = A[0] ; right = A[1] ;
bbox = combine(bound(A[0]),bound(A[1])) ;
else
Find midpoint m of bounding box of A along AXIS
Partition A into lists of size k and N-k around m
left = new bvh-node (A[O...k],(AXIS+1) mod 3) ;
right = new bvh-node(A[k+1...N-1],(AXIS+1) mod 3);
bbox = combine (left -> bbox, right -> bbox) ;

From page 285 of book

Traversal of Grid High Level

Initial State

10

First Split

Third Split

Final BSP Tree

Second Split

Fourth Split

BSP Trees Cont’ d

Continue splitting until leaf nodes

Visibility traversal in order
Child one
Root
Child two

Child one chosen based on viewpoint
Same side of sub-tree as viewpoint

BSP tree built once, used for all viewpoints
More details in book

11

Interactive Raytracing

Ray tracing historically slow

Now viable alternative for complex scenes
Key is sublinear complexity with acceleration;
need not process all triangles in scene

Allows many effects hard in hardware

Today graphics hardware (NVIDIA Optix)

= Ring - Stencil Routing = Cornell Box - Bitonic Sort

Glass Ball - Stencil Routing Cornell Box - Increased Search Radius

Raytracing on Graphics Hardware

Modern Programmable Hardware general
streaming architecture

Can map various elements of ray tracing

Kernels like eye rays, intersect etc.

In vertex or fragment programs

Convergence between hardware, ray tracing
[Purcell et al. 2002, 2003]
http://graphics.stanford.edu/papers/photongfx

12

