

## Computer Graphics

CSE 167 [Win 17], Lectures 16, 17:

Nuts and bolts of Ray Tracing

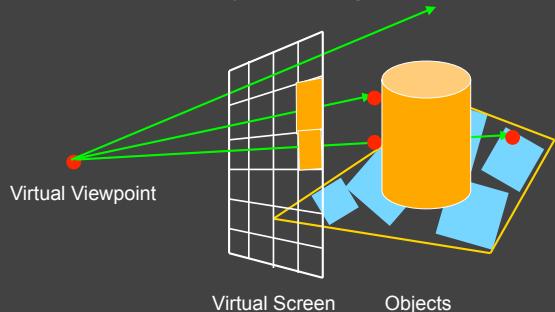
Ravi Ramamoorthi

<http://viscomp.ucsd.edu/classes/cse167/wi17>

Acknowledgements: Thomas Funkhouser and Greg Humphreys

## Heckbert's Business Card Ray Tracer

```
typedef struct{double x,y,z}vec;vec U,black,amb{-02.,02.,02.};struct sphere{ vec cen,color;
double rad,kd,ks,kt,kl,kr};s,*best,sph[]={{0.,6.,-5.1,1.1,-9.,05.,2.,85.0,1.7,-1.8.,-5.1,-5.2,1.,
7.,3.0.,05.1,2.1,-8.,-5.1,8.8,1.,-3.7,0.,0.1,2.3,-6.,15.,1.,-8.1,-7.0,0.,0.,0.,6.1,5.,-3.,-3.12.,
8.1.,1.5,0.,0.,0.,5.1,5.1};yx:double u,b,tmin,sqrt(),tan();double vdot(A,B)vec A,B;{return A.x*B.x+A.y*B.y+A.z*B.z;};vec vcomb(a,A,B)double a;vec A,B;{B.x=a.A.x;A.x+=a.A.x;B.y=a.A.y;B.z+=a.A.z;return B;};vec A{return vcomb(1./sqrt(vdot(A,A)),A.black);};struct sphere{intersect(P,D)vec P,D;{best=tmin=1e30;s= sph*5;while(s>=sph){b=vdot(D,U)=vcomb(-1,P,s->cen)),u=b-vdot(U,U)+s->rad*s->rad,u=u>?sqrt(u):1e31,u=b+u*1e-7;b=u;tmin=u>=1e-7&&u<tmin?best=u:tmin;return best;};vec trace(level,P,D)vec P;{double d,eta,e;vec N,color;
struct sphere*s,*i;if(!level--)return black;if(s->intersect(P,D));else return amb;color=amb;eta=s->ird=vdot(D,N=unit(vcomb(-1,P=vcomb(tmin,D,P),s->cen)));if(d<0){N=vcomb(-1,N.black),
eta=1/eta,d=-d;};sph*5;while(!s->ph){if(e->-k1*vdot(N,U=unit(vcomb(-1,P,j->cen)))>0&&intersect(P,U)==1){color=vcomb(e,I->color,color);U=s->color;color.x=U.x;color.y=U.y;color.z=U.z;e=1-eta*eta*(1-d*d);return vcomb(s->kt,e>0?trace(level,P,vcomb(eta,D,vcomb(s->kd,color,vcomb(s->kl,U,black))));main();printf("%d %d",32,32);while(yx<32*32) U=xy%32-32/2,U.z=32/2-xy++/32,U.y=32/2/ln(25/114.3915590261),U=vcomb(255.,trace(3,black,vunit(U)),black),printf("%0.0f %0.0f",U.y);}}minray!/*
```

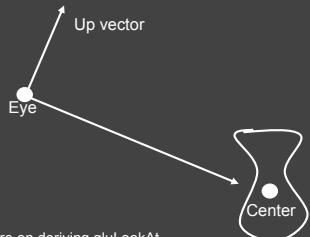

## Outline

- Camera Ray Casting (choose ray directions)
- Ray-object intersections
- Ray-tracing transformed objects
- Lighting calculations
- Recursive ray tracing

## Outline in Code

```
Image Raytrace (Camera cam, Scene scene, int width, int height)
{
    Image image = new Image (width, height) ;
    for (int i = 0 ; i < height ; i++)
        for (int j = 0 ; j < width ; j++) {
            Ray ray = RayThruPixel (cam, i, j) ;
            Intersection hit = Intersect (ray, scene) ;
            image[i][j] = FindColor (hit) ;
        }
    return image ;
}
```

## Ray Casting




## Finding Ray Direction

- Goal is to find ray direction for given pixel i and j
- Many ways to approach problem
  - Objects in world coord, find dirn of each ray (we do this)
  - Camera in canonical frame, transform objects (OpenGL)
- Basic idea
  - Ray has origin (camera center) and direction
  - Find direction given camera params and i and j
- Camera params as in gluLookAt
  - Lookfrom[3], LookAt[3], up[3], fov

## Similar to gluLookAt derivation

- gluLookAt(eyex, eyey, eyez, centerx, centery, centerz, upx, upy, upz)
- Camera at eye, looking at center, with up direction being up



From earlier lecture on deriving gluLookAt

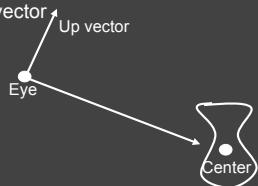
## Constructing a coordinate frame?

We want to associate  $w$  with  $a$ , and  $v$  with  $b$

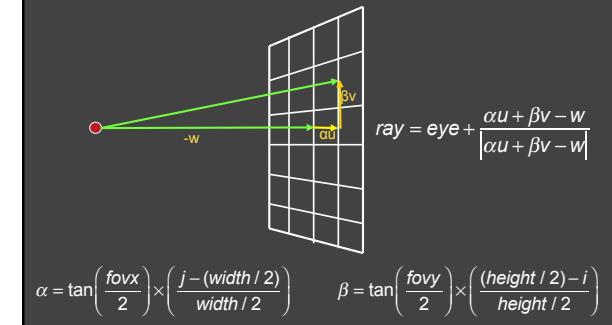
- But  $a$  and  $b$  are neither orthogonal nor unit norm
- And we also need to find  $u$

$$w = \frac{a}{\|a\|}$$

$$u = \frac{b \times w}{\|b \times w\|}$$


$$v = w \times u$$

From basic math lecture - Vectors: Orthonormal Basis Frames


## Camera coordinate frame

$$w = \frac{a}{\|a\|} \quad u = \frac{b \times w}{\|b \times w\|} \quad v = w \times u$$

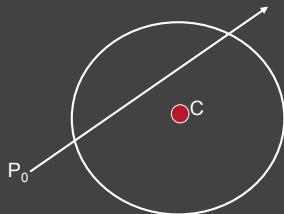
- We want to position camera at origin, looking down  $-Z$  dim
- Hence, vector  $a$  is given by **eye** – **center**
- The vector  $b$  is simply the **up vector**



## Canonical viewing geometry



## Outline


- Camera Ray Casting (choosing ray directions)
- Ray-object intersections*
- Ray-tracing transformed objects
- Lighting calculations
- Recursive ray tracing

## Outline in Code

```
Image Raytrace (Camera cam, Scene scene, int width, int height)
{
    Image image = new Image (width, height) ;
    for (int i = 0 ; i < height ; i++) {
        for (int j = 0 ; j < width ; j++) {
            Ray ray = RayThruPixel (cam, i, j) ;
            Intersection hit = Intersect (ray, scene) ;
            image[i][j] = FindColor (hit) ;
        }
    }
    return image ;
}
```

## Ray-Sphere Intersection

$$\begin{aligned} \text{ray} &\equiv \vec{P} = \vec{P}_0 + \vec{P}_1 t \\ \text{sphere} &\equiv (\vec{P} - \vec{C}) \cdot (\vec{P} - \vec{C}) - r^2 = 0 \end{aligned}$$



## Ray-Sphere Intersection

$$\begin{aligned} \text{ray} &\equiv \vec{P} = \vec{P}_0 + \vec{P}_1 t \\ \text{sphere} &\equiv (\vec{P} - \vec{C}) \cdot (\vec{P} - \vec{C}) - r^2 = 0 \end{aligned}$$

Substitute

$$\begin{aligned} \text{ray} &\equiv \vec{P} = \vec{P}_0 + \vec{P}_1 t \\ \text{sphere} &\equiv (\vec{P}_0 + \vec{P}_1 t - \vec{C}) \cdot (\vec{P}_0 + \vec{P}_1 t - \vec{C}) - r^2 = 0 \end{aligned}$$

Simplify

$$t^2(\vec{P}_1 \cdot \vec{P}_1) + 2t \vec{P}_1 \cdot (\vec{P}_0 - \vec{C}) + (\vec{P}_0 - \vec{C}) \cdot (\vec{P}_0 - \vec{C}) - r^2 = 0$$

## Ray-Sphere Intersection

$$t^2(\vec{P}_1 \cdot \vec{P}_1) + 2t \vec{P}_1 \cdot (\vec{P}_0 - \vec{C}) + (\vec{P}_0 - \vec{C}) \cdot (\vec{P}_0 - \vec{C}) - r^2 = 0$$

Solve quadratic equations for  $t$

- 2 real positive roots: pick smaller root
- Both roots same: tangent to sphere
- One positive, one negative root: ray origin inside sphere (pick + root)
- Complex roots: no intersection (check discriminant of equation first)



## Ray-Sphere Intersection

▪ Intersection point:  $\text{ray} \equiv \vec{P} = \vec{P}_0 + \vec{P}_1 t$

▪ Normal (for sphere, this is same as coordinates in sphere frame of reference, useful other tasks)

$$\text{normal} = \frac{\vec{P} - \vec{C}}{|\vec{P} - \vec{C}|}$$

## Ray-Triangle Intersection

- One approach: Ray-Plane intersection, then check if inside triangle

- Plane equation:

$$\text{plane} \equiv \vec{P} \cdot \vec{n} - \vec{A} \cdot \vec{n} = 0$$

$$\vec{n} = \frac{(\vec{C} - \vec{A}) \times (\vec{B} - \vec{A})}{|(\vec{C} - \vec{A}) \times (\vec{B} - \vec{A})|}$$

## Ray-Triangle Intersection

- One approach: Ray-Plane intersection, then check if inside triangle

- Plane equation:

$$\text{plane} \equiv \vec{P} \cdot \vec{n} - \vec{A} \cdot \vec{n} = 0$$

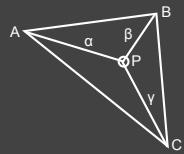
- Combine with ray equation:

$$\begin{aligned} \text{ray} &\equiv \vec{P} = \vec{P}_0 + \vec{P}_1 t \\ (\vec{P}_0 + \vec{P}_1 t) \cdot \vec{n} - \vec{A} \cdot \vec{n} &= 0 \end{aligned}$$

$$t = \frac{\vec{A} \cdot \vec{n} - \vec{P}_0 \cdot \vec{n}}{\vec{P}_1 \cdot \vec{n}}$$

## Ray inside Triangle

- Once intersect with plane, still need to find if in triangle
- Many possibilities for triangles, general polygons (point in polygon tests)
- We find parametrically [barycentric coordinates]. Also useful for other applications (texture mapping)




$$P = \alpha A + \beta B + \gamma C$$

$$\alpha \geq 0, \beta \geq 0, \gamma \geq 0$$

$$\alpha + \beta + \gamma = 1$$

## Ray inside Triangle



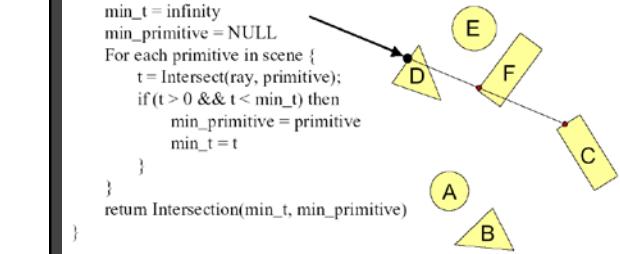
$$P = \alpha A + \beta B + \gamma C$$

$$\alpha \geq 0, \beta \geq 0, \gamma \geq 0$$

$$\alpha + \beta + \gamma = 1$$

$$P - A = \beta(B - A) + \gamma(C - A)$$

$$0 \leq \beta \leq 1, 0 \leq \gamma \leq 1$$


$$\beta + \gamma \leq 1$$

## Other primitives

- Much early work in ray tracing focused on ray-primitive intersection tests
- Cones, cylinders, ellipsoids
- Boxes (especially useful for bounding boxes)
- General planar polygons
- Many more
- Consult chapter in Glassner (handed out) for more details and possible extra credit

## Ray Scene Intersection

```
Intersection FindIntersection(Ray ray, Scene scene)
{
    min_t = infinity
    min_primitive = NULL
    For each primitive in scene {
        t = Intersect(ray, primitive);
        if (t > 0 && t < min_t) then
            min_primitive = primitive
            min_t = t
    }
    return Intersection(min_t, min_primitive)
}
```



## Outline

- Camera Ray Casting (choosing ray directions)
- Ray-object intersections
- Ray-tracing transformed objects*
- Lighting calculations
- Recursive ray tracing

## Transformed Objects

- E.g. transform sphere into ellipsoid
- Could develop routine to trace ellipsoid (compute parameters after transformation)
- May be useful for triangles, since triangle after transformation is still a triangle in any case
- But can also use original optimized routines

## Ray-Tracing Transformed Objects

We have an optimized ray-sphere test

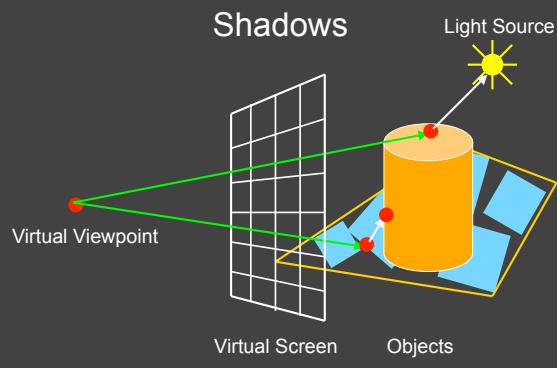
- But we want to ray trace an ellipsoid...

Solution: Ellipsoid transforms sphere

- Apply inverse transform to ray, use ray-sphere
- Allows for instancing (traffic jam of cars)
- Same idea for other primitives

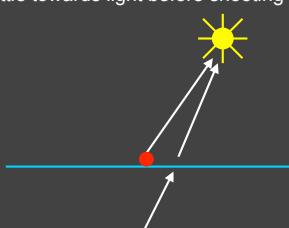
## Transformed Objects

- Consider a general 4x4 transform M
  - Will need to implement matrix stacks like in OpenGL
- Apply inverse transform  $M^{-1}$  to ray
  - Locations stored and transform in homogeneous coordinates
  - Vectors (ray directions) have homogeneous coordinate set to 0 [so there is no action because of translations]
- Do standard ray-surface intersection as modified
- Transform intersection back to actual coordinates
  - Intersection point  $p$  transforms as  $Mp$
  - Distance to intersection if used may need recalculation
  - Normals  $n$  transform as  $M^{-1}n$ . Do all this before lighting


## Outline

- Camera Ray Casting (choosing ray directions)
- Ray-object intersections
- Ray-tracing transformed objects
- *Lighting calculations*
- Recursive ray tracing

## Outline in Code


```
Image Raytrace (Camera cam, Scene scene, int width, int height)
{
    Image image = new Image (width, height) ;
    for (int i = 0 ; i < height ; i++) {
        for (int j = 0 ; j < width ; j++) {
            Ray ray = RayThruPixel (cam, i, j) ;
            Intersection hit = Intersect (ray, scene) ;
            image[i][j] = FindColor (hit) ;
        }
    }
    return image ;
}
```

## Shadows



## Shadows: Numerical Issues

- Numerical inaccuracy may cause intersection to be below surface (effect exaggerated in figure)
- Causing surface to incorrectly shadow itself
- Move a little towards light before shooting shadow ray



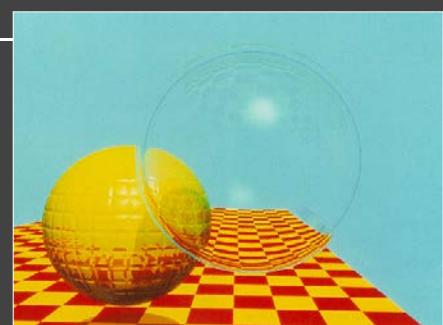
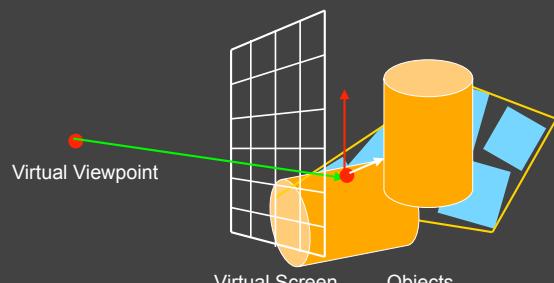
## Lighting Model

- Similar to OpenGL
- Lighting model parameters (global)
  - Ambient r g b
  - Attenuation const linear quadratic
$$L = \frac{L_0}{const + lin * d + quad * d^2}$$
- Per light model parameters
  - Directional light (direction, RGB parameters)
  - Point light (location, RGB parameters)
  - Some differences from HW 2 syntax

## Material Model

- Diffuse reflectance (r g b)
- Specular reflectance (r g b)
- Shininess s
- Emission (r g b)
- All as in OpenGL

## Shading Model



$$I = K_a + K_e + \sum_{i=1}^n \textcolor{red}{V}_i L_i (K_d \max(I_i \cdot n, 0) + K_s (\max(h_i \cdot n, 0))^s)$$

- Global ambient term, emission from material
- For each light, diffuse specular terms
- Note visibility/shadowing for each light (not in OpenGL)
- Evaluated per pixel per light (not per vertex)

## Outline

- Camera Ray Casting (choosing ray directions)
- Ray-object intersections
- Ray-tracing transformed objects
- Lighting calculations
- *Recursive ray tracing*

## Mirror Reflections/Refractions



## Basic idea

For each pixel

- Trace Primary Eye Ray, find intersection
- Trace Secondary Shadow Ray(s) to all light(s)
  - Color = Visible ? Illumination Model : 0 ;
- Trace Reflected Ray
  - Color += reflectivity \* Color of reflected ray

## Recursive Shading Model

$$I = K_a + K_e + \sum_{i=1}^n \textcolor{red}{V_i} L_i (K_d \max(I_i \cdot n, 0) + K_s (\max(h_i \cdot n, 0))^s) + \textcolor{blue}{K_s} J_R + \textcolor{blue}{K_t} J_T$$

- Highlighted terms are recursive specularities [mirror reflections] and transmission (latter is extra credit)
- Trace secondary rays for mirror reflections and refractions, include contribution in lighting model
- GetColor calls RayTrace recursively (the I values in equation above of secondary rays are obtained by recursive calls)

## Problems with Recursion

- Reflection rays may be traced forever
- Generally, set maximum recursion depth
- Same for transmitted rays (take refraction into account)

## Effects needed for Realism

- (Soft) Shadows
- Reflections (Mirrors and Glossy)
- Transparency (Water, Glass)
- **Interreflections (Color Bleeding)**
- Complex Illumination (Natural, Area Light)
- Realistic Materials (Velvet, Paints, Glass)

Discussed in this lecture so far

Not discussed but possible with distribution ray tracing  
Hard (but not impossible) with ray tracing; radiosity methods

## Some basic add ons

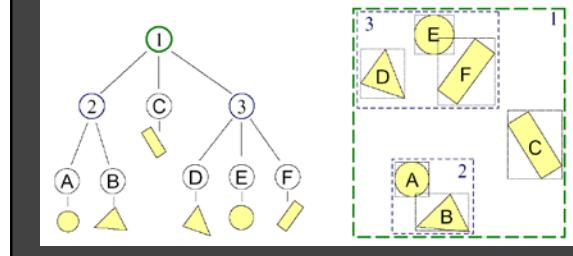
- Area light sources and soft shadows: break into grid of  $n \times n$  point lights
  - Use jittering: Randomize direction of shadow ray within small box for given light source direction
  - Jittering also useful for antialiasing shadows when shooting primary rays
- More complex reflectance models
  - Simply update shading model
  - But at present, we can handle only mirror global illumination calculations


## Acceleration

Testing each object for each ray is slow

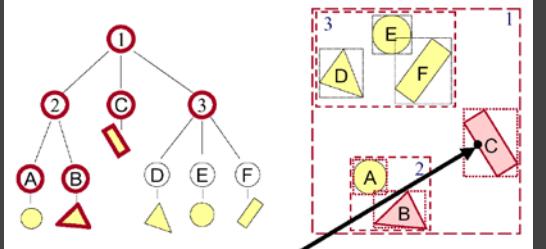
- Fewer Rays
  - Adaptive sampling, depth control
- Generalized Rays
  - Beam tracing, cone tracing, pencil tracing etc.
- Faster Intersections
  - Optimized Ray-Object Intersections
  - **Fewer Intersections**

## Acceleration Structures


- Bounding boxes (possibly hierarchical)
  - If no intersection bounding box, needn't check objects



Spatial Hierarchies (Oct-trees, kd trees, BSP trees)

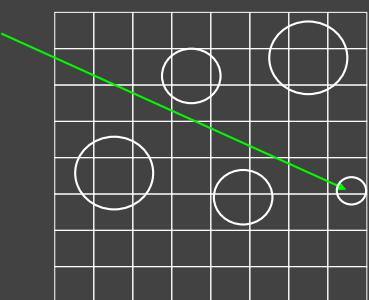

## Bounding Volume Hierarchies 1

- Build hierarchy of bounding volumes
  - Bounding volume of interior node contains all children



## Bounding Volume Hierarchies 2

- Use hierarchy to accelerate ray intersections
  - Intersect node contents only if hit bounding volume

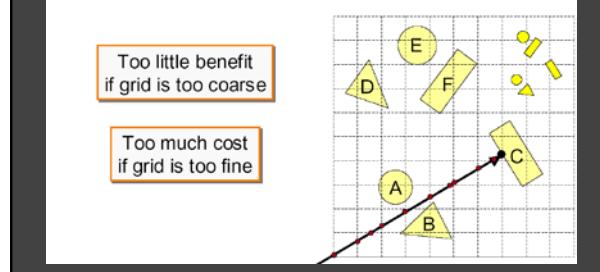



## Bounding Volume Hierarchies 3

- Sort hits & detect early termination

```
FindIntersection(Ray ray, Node node)
{
    // Find intersections with child node bounding volumes
    ...
    // Sort intersections front to back
    ...
    // Process intersections (checking for early termination)
    min_t = infinity;
    for each intersected child i {
        if (min_t < bv_t[i]) break;
        shape_t = FindIntersection(ray, child);
        if (shape_t < min_t) { min_t = shape_t; }
    }
    return min_t;
}
```

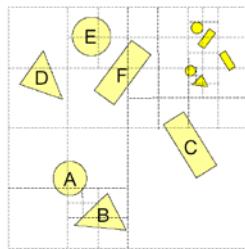
## Acceleration Structures: Grids




## Uniform Grid: Problems

- Potential problem:
  - How choose suitable grid resolution?

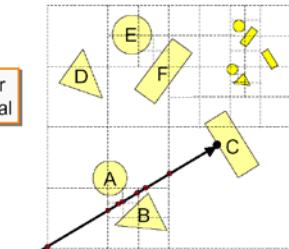
Too little benefit  
if grid is too coarse


Too much cost  
if grid is too fine



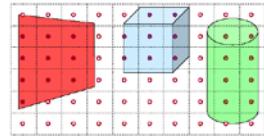
## Octree

- Construct adaptive grid over scene
  - Recursively subdivide box-shaped cells into 8 octants
  - Index primitives by overlaps with cells


Generally fewer cells



## Octree traversal


- Trace rays through neighbor cells
  - Fewer cells
  - More complex neighbor finding

Trade-off fewer cells for more expensive traversal



## Other Accelerations

- Screen space coherence
  - Check last hit first
  - Beam tracing
  - Pencil tracing
  - Cone tracing
- Memory coherence
  - Large scenes
- Parallelism
  - Ray casting is "embarrassingly parallelizable"
- etc.



## Ray Tracing Acceleration Structures

- Bounding Volume Hierarchies (BVH)
- Uniform Spatial Subdivision (Grids)
- Binary Space Partitioning (BSP Trees)
  - Axis-aligned often for ray tracing: kd-trees
- Conceptually simple, implementation a bit tricky
  - Lecture relatively high level: Start early, go to section
  - Remember that acceleration is a small part of grade

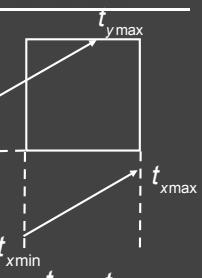
## Math of 2D Bounding Box Test

- Can you find a  $t$  in range

$$t > 0$$

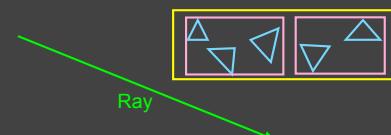
$$t_{x_{\min}} \leq t \leq t_{x_{\max}}$$

$$t_{y_{\min}} \leq t \leq t_{y_{\max}}$$


if  $t_{x_{\min}} > t_{y_{\max}}$  OR  $t_{y_{\min}} > t_{x_{\max}}$

return false;

else


return true;

No intersection if x and y ranges don't overlap



## Bounding Box Test

- Ray-Intersection is simple coordinate check
- Intricacies with test, see book
- Hierarchical Bounding Boxes

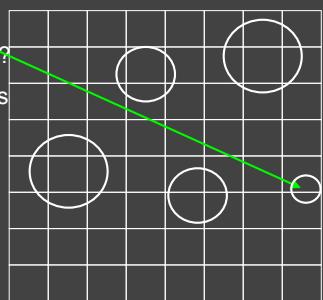


## Hierarchical Bounding Box Test

- If ray hits root box
  - Intersect left subtree
  - Intersect right subtree
  - Merge intersections (find closest one)
- Standard hierarchical traversal
  - But caveat, since bounding boxes may overlap
- At leaf nodes, must intersect objects

## Creating Bounding Volume Hierarchy

```
function bvh-node::create (object array A, int AXIS)
    N = A.length();
    if (N == 1) {left = A[0]; right = NULL; bbox = bound(A[0]);}
    else if (N == 2) {
        left = A[0]; right = A[1];
        bbox = combine(bound(A[0]),bound(A[1]));
    }
    else
        Find midpoint m of bounding box of A along AXIS
        Partition A into lists of size k and N-k around m
        left = new bvh-node (A[0...k],(AXIS+1) mod 3);
        right = new bvh-node(A[k+1...N-1],(AXIS+1) mod 3);
        bbox = combine (left -> bbox, right -> bbox);
```


From page 285 of book

## Uniform Spatial Subdivision

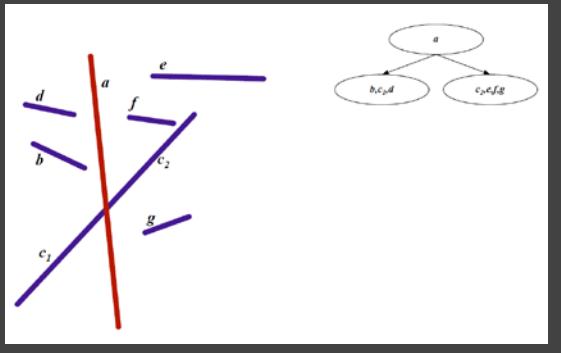
- Different idea: Divide space rather than objects
- In BVH, each object is in one of two sibling nodes
  - A point in space may be inside both nodes
- In spatial subdivision, each space point in one node
  - But object may lie in multiple spatial nodes
- Simplest is uniform grid (have seen this already)
- Challenge is keeping all objects within cell
  - And in traversing the grid

## Traversal of Grid High Level

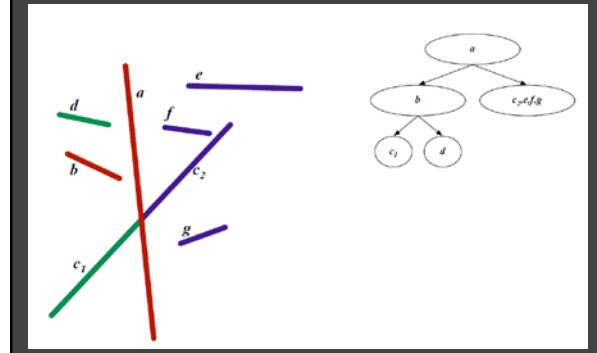
- Next Intersect Pt?
- Irreg. samp. pattern?
- But regular in planes
- Fast algo. possible
- (more on board)



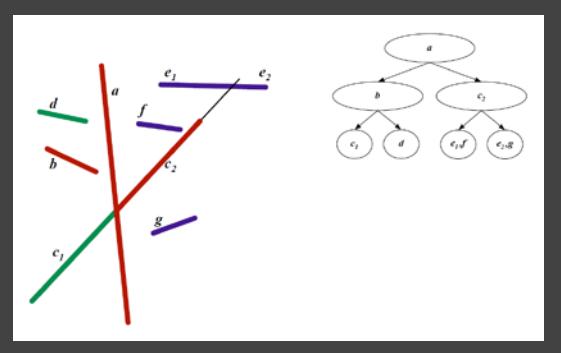
## BSP Trees


- Used for visibility and ray tracing
  - Book considers only axis-aligned splits for ray tracing
  - Sometimes called kd-tree for axis aligned
- Split space (binary space partition) along planes
- Fast queries and back-to-front (painter's) traversal
- Construction is conceptually simple
  - Select a plane as root of the sub-tree
  - Split into two children along this root
  - Random polygon for splitting plane (may need to split polygons that intersect it)

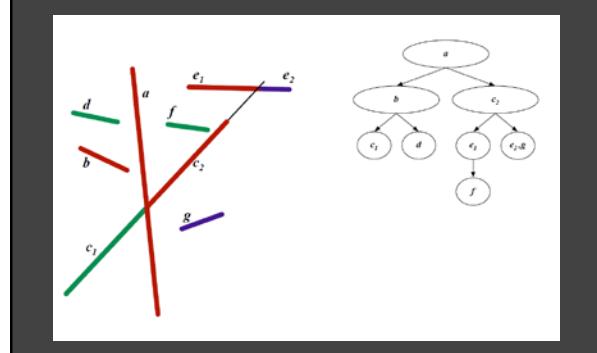
BSP slides courtesy Prof. O' Brien


## Initial State

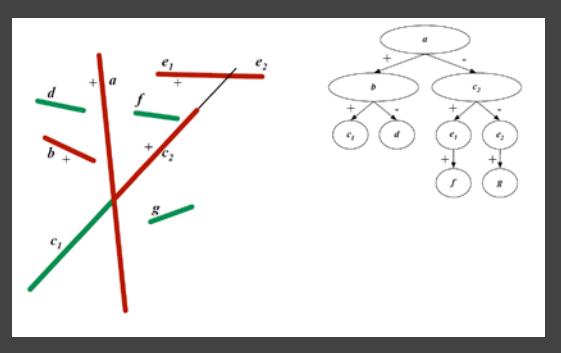



### First Split




### Second Split




### Third Split



### Fourth Split



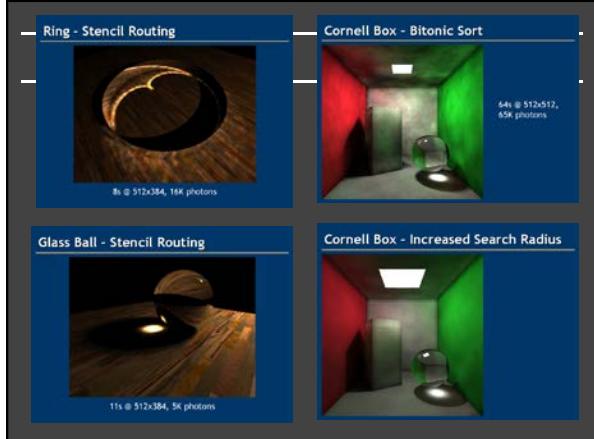
### Final BSP Tree



### BSP Trees Cont'd

- Continue splitting until leaf nodes
- Visibility traversal in order
  - Child one
  - Root
  - Child two
- Child one chosen based on viewpoint
  - Same side of sub-tree as viewpoint
- BSP tree built once, used for all viewpoints
  - More details in book

## Interactive Raytracing


- Ray tracing historically slow
- Now viable alternative for complex scenes
  - Key is sublinear complexity with acceleration; need not process all triangles in scene
- Allows many effects hard in hardware
- Today graphics hardware (NVIDIA Optix)

## Raytracing on Graphics Hardware

- Modern Programmable Hardware general streaming architecture
- Can map various elements of ray tracing
- Kernels like eye rays, intersect etc.
- In vertex or fragment programs
- Convergence between hardware, ray tracing

[Purcell et al. 2002, 2003]

<http://graphics.stanford.edu/papers/photongfx>

