Effects needed for Realism

Computer Graphics (Soft) Shadows

CSE 167 [Win 17], Lecture 15: Ray Tracing Reflections (Mirrors and Glossy)
Ravi Ramamoorthi Transparency (Water, Glass)

. : Interreflections (Color Bleeding)
http://viscomp.ucsd.edu/classes/cse167/wi17

Complex lllumination (Natural, Area Light)
Realistic Materials (Velvet, Paints, Glass)

And many more

Ray Tracing

Different Approach to Image Synthesis as
compared to Hardware pipeline (OpenGL)

Pixel by Pixel instead of Object by Object

Easy to compute shadows/transparency/etc

Image courtesy Paul Heckbert 1983

Outline Ray Tracing: History

History Appel 68

Basic Ray Casting (instead of rasterization) Whitted 80 [recursive ray tracing]
Comparison to hardware scan conversion Landmark in computer graphics

Shadows / Reflections (core algorithm) Lots of work on various geometric primitives

: Lots of work on accelerations

Ray-Surface Intersection W :
R Current Research

Optlmlzatlons Real-Time raytracing (historically, slow technique)

Ray tracing architecture
Current Research




Ray Tracing History Ray Tracing History

Ray Tracing in Computer Graphics Ray Tracing in Computer Graphics

Appel 1968 - Ray casting “An improved
Illlumination model
for shaded display,”
2. Check for shadows by sending a ray to the light T. Whitted,

\ . CACM 1980

1. Generate an image by sending one ray per pixel

Resolution:
512 x 512
Time:
VAX 11/780 (1979)
74 min.
PC (2006)
6 sec. s
Spheres and Checkerboard, T. Whitted, 1979

€93488 Locture 2 Pat Haneahan, Spring 2009

Outline in Code Outline

Image Raytrace (Camera cam, Scene scene, int width, int height)

‘ History

Image image = new Image (width, height) ; Basic Ray Casting (instead of rasterization)
' ' Comparison to hardware scan conversion

for (inti=0 ;i< height; i++)
for (intj = 0; ] < width ; j++) { Shadows / Reflections (core algorithm)
Ray ray = RayThruPixel (cam, i, j) ; Ray-Surface Intersection
Intersection hit = Intersect (ray, scene) ;
imageli][j] = FindColor (hit) ;
}

return image ;

Optimizations

Current Research

Ray Casting Ray Casting

Produce same images as with OpenGL
Visibility per pixel instead of Z-buffer
Find nearest object by shooting rays into scene
Shade it as in standard OpenGL

Virtual Viewpoint

Virtual Screen Objects




Comparison to hardware scan-line Outline

Per-pixel evaluation, per-pixel rays (not scan-convert History
each object). On face of it, costly

Basic Ray Casting (instead of rasterization)
Comparison to hardware scan conversion
But good for walkthroughs of extremely large models , .
(amortize preprocessing, low complexity) Shadows / Reflections (core algorithm)

Ray-Surface Intersection
More complex shading, lighting effects possible Optimizations

Current Research

Shadows Light Source Shadows: Numerical Issues

* Numerical inaccuracy may cause intersection to be
below surface (effect exaggerated in figure)

* Causing surface to incorrectly shadow itself
» Move a little towards light before shooting shadow ray

Virtual Viewpoint

Virtual Screen Objects
Shatiowzgyddifivhisiattibeked: objectiizibhadow

Mirror Reflections/Refractions Recursive Ray Tracing

For each pixel
Trace Primary Eye Ray, find intersection

Trace Secondary Shadow Ray(s) to all light(s)
Color = Visible ? lllumination Model : 0 ;

) : . Trace Reflected Ray
Virtual Vlewpomt Color += reflectivity * Color of reflected ray

Virtual Screen Objects
Generate reflected ray in mirror direction,
Get reflections and refractions of objects




Problems with Recursion

Reflection rays may be traced forever

Generally, set maximum recursion depth

Same for transmitted rays (take refraction into
account)

Effects needed for Realism

(Soft) Shadows

Reflections (Mirrors and Glossy)
Transparency (Water, Glass)
Interreflections (Color Bleeding)

Complex lllumination (Natural, Area Light)
Realistic Materials (Velvet, Paints, Glass)

Discussed in this lecture
Not discussed but possible with distribution ray tracing
Hard (but not impossible) with ray tracing; radiosity methods

Ray/Object Intersections

Heart of Ray Tracer
One of the main initial research areas
Optimized routines for wide variety of primitives

Various types of info
Shadow rays: Intersection/No Intersection
Primary rays: Point of intersection, material, normals
Texture coordinates

Work out examples
Triangle, sphere, polygon, general implicit surface

Turner Whitted 1980

Outline

History

Basic Ray Casting (instead of rasterization)
Comparison to hardware scan conversion

Shadows / Reflections (core algorithm)
Ray-Surface Intersection
Optimizations

Current Research

Ray-Sphere Intersection




Ray-Sphere Intersection

ray =P=P+Pt

sphere=(P-C)«(P-C)-r?=0
Substitute

Simplify

t2(P,+P)+2t B, +(P,—C)+(P,-C)+ (P, C)-

Ray-Sphere Intersection

Intersection point: ray = P=P +Pt

Normal (for sphere, this is same as coordinates
in sphere frame of reference, useful other tasks)
p-C
normal = ——
P-¢]

Ray-Triangle Intersection

One approach: Ray-Plane intersection, then
check if inside triangle

Plane equation:

plane=P<fi—A+i=0
Combine with ray equation:

Ray-Sphere Intersection
t2(P«P)+2t P,+«(P,—C)+(P,~C)+(P,~C)-r?

Solve quadratic equations for t @
2 real positive roots: pick smaller roo
Both roots same: tangent to sphere /@
One positive, one negative root: ray
origin inside sphere (pick + root) @
Complex roots: no intersection check O

discriminant of equation first)

Ray-Triangle Intersection
One approach: Ray-Plane intersection, then
check if inside triangle

Plane equation:

plane=P+fi—A+i=0

Ray inside Triangle

Once intersect with plane, still need to find if in
triangle

Many possibilities for triangles, general polygons
(point in polygon tests)

We find parametrically [barycentric coordinates]. Also

useful for other applications (texture mapping)
B
P=aA+pB+yC
20,420,720
o+p+y=1




Ray inside Triangle

P=aA+pB+yC
2>0,20,y2>0
o+f+y=1

P-A=B(B-A)+y(C-A)
0<pB<1,0<y<1
B+y <1

Ray-Tracing Transformed Objects

We have an optimized ray-sphere test
But we want to ray trace an ellipsoid...

Solution: Ellipsoid transforms sphere
Apply inverse transform to ray, use ray-sphere
Allows for instancing (traffic jam of cars)

Mathematical details worked out in class

Outline

History

Basic Ray Casting (instead of rasterization)
Comparison to hardware scan conversion

Shadows / Reflections (core algorithm)
Ray-Surface Intersection
Optimizations

Current Research

Other primitives

Much early work in ray tracing focused on ray-primitive
intersection tests

Cones, cylinders, ellipsoids

Boxes (especially useful for bounding boxes)
General planar polygons

Many more

Many references. For example, chapter in Glassner
introduction to ray tracing (see me if interested)

Transformed Objects

Consider a general 4x4 transform M
Will need to implement matrix stacks like in OpenGL

Apply inverse transform M- to ray
Locations stored and transform in homogeneous
coordinates
Vectors (ray directions) have homogeneous coordinate
set to 0 [so there is no action because of translations]

Do standard ray-surface intersection as modified

Transform intersection back to actual coordinates
Intersection point p transforms as Mp
Distance to intersection if used may need recalculation
Normals n transform as M-n. Do all this before lighting

Acceleration

Testing each object for each ray is slow
Fewer Rays
Adaptive sampling, depth control
Generalized Rays
Beam tracing, cone tracing, pencil tracing etc.
Faster Intersections
Optimized Ray-Object Intersections
Fewer Intersections

We just discuss some approaches at high level; chapter 13 briefly covers




Acceleration Structures Acceleration Structures: Grids

Bounding boxes (possibly hierarchical)
If no intersection bounding box, needn’ t check objects

e

Spatial Hierarchies (Oct-trees, kd trees, BSP trees)

Acceleration and Regular Grids Outline

Simplest acceleration, for example 5x5x5 grid History
For each grid cell, store overlapping triangles Basic Ray Casting (instead of rasterization)

. . Comparison to hardware scan conversion
March ray along grid (need to be careful with

this), test against each triangle in grid cell Shadows / Reflections (core algorithm)
More sophisticated: kd-tree, oct-tree bsp-tree Ray-Surface Intersection
Or use (hierarchical) bounding boxes Optimizations

Current Research

Try to implement some acceleration in HW 4

Interactive Raytracing

Ray tracing historically slow

Now viable alternative for complex scenes
Key is sublinear complexity with acceleration;
need not process all triangles in scene

Allows many effects hard in hardware
NVIDIA OptiX ray-tracing API like OpenGL




— Ring - Stencil Routing —— Cornell Box - Bitonic Sort

Raytracing on Graphics Hardware
Modern Programmable Hardware general
streaming architecture
Can map various elements of ray tracing

Kernels like eye rays, intersect etc.

Glass Ball - Stencil Routing Cornell Box - Increased Search Radius

In vertex or fragment programs ! -

Convergence between hardware, ray tracing
[Purcell et al. 2002, 2003]
http://graphics.stanford.edu/papers/photongfx




