Computer Graphics

CSE 167 [Win 17], Lecture 13: Raster Graphics, Color

Ravi Ramamoorthi

http://viscomp.ucsd.edu/classes/cse167/wi17

Images and Raster Graphics

Real world is continuous (almost)

How to represent images on a display?

Raster graphics: use a bitmap with discrete pixels
Raster scan CRT Y

(paints image
line by line)

Cannot be resized without loss

Compare to vector graphics
Resized arbitrarily. For drawings
But how to represent photos, CG?

Resolutions

Size of grid (1920x1200 = 2,304,000 pixels)
32 bit of memory for RGBA framebuffer 8+ MB

For printers, pixel density (300 dpi or ppi)
Printers often binary or CMYK, require finer grid
iPhone “retina display” > 300 dpi. At 12 inches,
pixels closer than retina’ s ability to distinguish angles

Digital cameras in Mega-Pixels (often > 10 MP)
Color filter array (Bayer Mosaic)
Pixels really small (micron)

Lecture Overview

Many basic things tying together course
Is part of the material, will be covered (briefly) on midterm

Raster graphics

Gamma Correction

Color

Hardware pipeline and rasterization

Displaying Images: Ray Tracing and Rasterization
Essentially what this course is about (HW 2 and HW 4)

Introduced now so could cover basics for HW 1,2,3
Some images from wikipedia

Displays and Raster Devices
CRT, flat panel, television (rect array of pixels)
Printers (scanning: no physical grid but print ink)
Digital cameras (grid light-sensitive pixels)
Scanner (linear array of pixels swept across)

Store image as 2D array (of RGB [sub-pixel] values)
In practice, there may be resolution mismatch, resize
Resize across platforms (phone, screen, large TV)

Vector image: description of shapes (line, circle, ...)
E.g., line art such as in Adobe lllustrator
Resolution-Independent but must rasterize to display
Doesn’ t work well for photographs, complex images

Monitor Intensities

Intensity usually stored with 8 bits [0...255]
HDR can be 16 bits or more [0...65535]
Resolution-independent use [0...1] intermediate

Monitor takes input value [0...1] outputs intensity
Non-zero intensity for 0, black level even when off
1.0 is maximum intensity (output 1.0/0.0 is contrast)
Non-linear response (as is human perception)
0.5 may map to 0.25 times the response of 1.0
Gamma characterization and gamma correction
Some history from CRT physics and exponential forms




Lecture Overview Nonlinearity and Gamma

Many basic things tying together course Exponential function | = a”

Raster graphics | is displayed intensity, a is pixel value

Gamma Correction For many monitors y is between 1.8 and 2.2

Color In computer graphics, most images are linear

. . Lighting and material interact linearly
Hardware pipeline and rasterization 1

Gamma correction ' %
Displaying Images: Ray Tracing and Rasterization . a=a
Essentially what this course is about (HW 2 and HW 5) Examples with y = 2 : : :
Input a = 0 leads to final intensity | = 0, no correction
Input a = 1 leads to final intensity | = 1, no correction
Input a = 0.5 final intensity 0.25. Correct to 0.707107

Makes i “prighter” [bright id-t
e s femerte akes image “brighter” [brightens mid-tones]

Gamma Correction Finding Monitor Gamma

Can be messy for images. Usually gamma -

on one monitor, but viewed on others. .. Adjust grey until match 0-1 checkerboard to find

mid-point a value i.e.,afor|=0.5 =g

For television, encode with gamma (often _10g05

loga

0.45, decode with gamma 2.2) y=

CG, encode gamma is usually 1, correct

www.dfstudios.co.uk/wp-content/ |
uploads/2010/12/graph_gamcor.png

Human Perception

Why not just make everything linear, avoid gamma
Ideally, 256 intensity values look linear

But human perception itself non-linear
Gamma between 1.5 and 3 depending on conditions
Gamma is (sometimes) a feature
Equally spaced input values are perceived roughly equal




Lecture Overview Color

Many basic things tying together course

Huge topic (can read textbooks)
Raster graphics Schrodinger much more work on this than quantum

@i et For this course, RGB (red green blue), 3 primaries

Additive (not subtractive) mixing for arbitrary colors
Grayscale:0.3R+06 G+0.1B

: : : - Secondary Colors (additive, not paints etc.)
Displaying Images: Ray Tracing and Rasterization Red + Green = Yellow, Red + Blue = Magenta,
Essentially what this course is about (HW 2 and HW 5) Blue + Green = Cyan, R+G+B = White

Color

Hardware pipeline and rasterization

Many other color spaces
HSV, CIE etc.

Some images from wikipedia

RGB Color Eyes as Sensors

Venn, color cube The human eye contains cells that sense light

Not all colors possible * Rods
+ Mo color (sort of)

* Spread over the retina

+ More sensitive

+ Cones
* Three types of cones
+ Each sensitive to different frequency distribution
+ Concentrated in fovea (center of the retina)
+ Less sensitive

Images from wikipedia Slides courtesy Prof. O’ Brien

Cones (Trichromatic) Cone Response

. EaCh LYP(I: of cone responds to different range of Response of a cone is given by a convolution integral :
frequencies/wavelengths I / BOYL(AJAA continuus version of a dot preduct

* Long, medium, short
- Also called by color M= /4-(;\)J-!(A}:1,\
* Red, green, blue
+ Misleading
“Red" does not
mean your red
cones are firing..

Mormaksed sensinily curaes

5— /(I'(A]S(A)ci/\

400 500 600 700
Wavelength (nm)




Color Matching Functions

Using Color Matching Functions

Given color matching functions in matrix form and new light
(M) ... F(Aw) ' M;'" A

C=1ah) ... a(An) Y AT A
b(A) ... bAw) a0 |

@(A1)

P = H

H(AN)

amount of each pri -y to match is given by C®

Alpha Compositing

RGBA (32 bits including alpha transparency)
You mostly use 1 (opaque)
Can simulate sub-pixel coverage and effects

Compositing algebra

Aoss Ao 8 Axce

N @

&
S0
[
‘ ';

oy a A
=00 -G )
R .

Hardware Pipeline

generates stream of vertices

Vertex shader called for each vertex
Output is transformed geometry

rasterizes transformed vertices
Output are fragments

Fragment shader for each .'
fragment
Output is Framebuffer image .

CIE XYZ

Imaginary set of color primaries with positive values, X,Y, Z

XYZ cchon machng Lutction (1) beved)

Lecture Overview
Many basic things tying together course
Raster graphics
Gamma Correction
Color
Hardware pipeline and rasterization

Displaying Images: Ray Tracing and Rasterization
Essentially what this course is about (HW 2 and HW 5)

Read chapter 8 more details

Rasterization

In modern OpenGL, really only OpenGL function
Almost everything is user-specified, programmable
Basically, how to draw (2D) primitive on screen

Long history
Bresenham line drawing
Polygon clipping
Antialiasing

What we care about
OpenGL generates a fragment for each pixel in triangle
Colors, values interpolated from vertices (Gouraud)




Z-Buffer Lecture Overview
—

Sort fragments by depth Many basic things tying together course

(only draw closest one) Raster graphics

New fragment replaces | Gamma Correction
old if depth test works t

OpenGL doss this auto

can override if you want

Color
Hardware pipeline and rasterization

Displaying Images: Ray Tracing and Rasterization

Must store z memory Essentially what this course is about (HW 2 and HW 5)

Simple, easy to use

Z-buffer representation

What is the core of 3D pipeline? Ray Tracing vs Rasterization

For each object (triangle), for each pixel, Rasterization complexity is N * d
compute shading (do fragment program) (N = objs, p = pix, d = pix/object)

Must touch each object (but culling possible)
Rasterization (OpenGL) in HW 2
For each object (triangle)

For each pixel spanned by that triangle
Call fragment program

Ray tracing naive complexity is p * N
Much higher since p >>d
But acceleration structures allow p * log (N)
Must touch each pixel

Ray Tracing in HW 4: flip loops Ray tracing can win if geometry very complex

For each pixel Historically, OpenGL real-time, ray tracing slow
el CEED TENE]D : Now, real-time ray tracers, OpenRT, NVIDIA Optix
Compute shading (rough equivalent of fragment program) Ray tracing has advantage for shadows, interreflections

HW 2, 4 take almost same input. Core of class Hybrid solutions now common

Course Goals and Overview

Generate images from 3D graphics

Using both rasterization (OpenGL) and Raytracing
HW 2 (OpenGL), HW 4 (Ray Tracing)

Both require knowledge of transforms, viewing
HW 1

Need geometric model for rendering
Splines for modeling (HW 3)




