Advanced Computer Graphics

CSE 163 [Spring 2018], Lecture 8

Ravi Ramamoorthi

http://www.cs.ucsd.edu/~ravir

wl &

Outline

Basic assignment overview
Detailed discussion of mesh simplification
Progressive meshes

Quadric error metrics

Mesh Viewer (3

Deliberately, no skeleton code for assignment
Think about and implement full system from scratch

First step: Mesh viewer
Read meshes (in simple OFF file format), view them
Should be able to reuse some code from 167 etc.
Please ask instructor or TA if stuck, need some help

Shading: must average face normals per vertex (this may

give you a start in implementing a mesh data structure)
Debugging modes for shading (color each triangle
separately with an individual color)

Software Design
Define mesh class with display method etc.

Use C++ STL data structures where appropriate (see assn)

To Do

Assignment 1, Due Apr 27
Any last minute issues or difficulties?

Assignment 2 due May 18
Please START EARLY. Can do most after this week
Contact us for difficulties, help finding partners etc.

Assignment Overview

Implement complete system for mesh simplification
Plus progressive meshes

Possibly challenging assignment: start very early
and proceed in incremental fashion

Choice of data structure for meshes is the key (read
the assignment)

This involves fairly recent work. No one answer
Think about the best way of proceeding, use creativity

Mesh Connectivity (3.2)

Build up mesh connectivity data structure
Input is vertices and faces from input file

Goal is to do edge collapses in constant time
No iteration over whole mesh
Most of mesh unchanged
Important questions for your data structure to answer:
“What vertices neighbor my current vertex?” and
“What faces neighbor my current vertex”
Think about updating your data structure. Collapsing an
edge may require more than just the edge itself. You
must update every vertex or face that has changed

Mesh Decimation (edge collapse) Mesh Decimation (edge collapse)

Can you handle this correctly and efficiently? Debugging Can you handle this correctly and efficiently? Debugging
examples in testpatch and plane (do these first) examples in testpatch and plane (do these first)

Mesh Decimation (edge collapse 3.3) Mesh Data Structure Hints

Simplest (I think): Faces store constituent

vertices [indexed face set as in OFF], vertices

store adjacent faces (how do you create vertex-
5 J (y

' ‘ face adjacency?)
To simplify, first create new vertex v. Adjacent

faces are those adjacent to vO or v1

Create new vertex v (based on appropriate rule .
(PPIoP) For each of those faces, update to point to v

Find all faces/edges neighbor vertex v1 (such as A) instead of vO or v1

Change them to use v instead of v1. Do the same for vO

Depend on data structure, you need to fix all faces, edges

Decimation (edge collapse 3.3)
S ﬂh = Ak
eSS S

Create new vertex v (based on appropriate rule like average) Find faces neighboring edge v0-v1 (such as X)

Find all faces that neighbor vertex v1 (such as A) Remove from mesh

Simple use of vertex to face adjacency This may involve updating face/vertex adjacency relationships etc.
E.g. what is adjacency for v (faces adjacent to vertex?)

Change them to use v instead of v1. Do the same for vO Are other vertices affected in terms of adjacent faces?

Worry about triangle fins (extra credit, not discussed)

Mesh Data Structure Hints

With indexed face set plus vertex to face adjacency,
removing a face should just work (remember to delete
face from vertex adjacency lists)

In general, winged edge, half-edge may be (slightly)
more efficient, but also harder to implement

Ultimately, your choice and work out the details
Good luck!!

Implementation

Tricky

When you remove something, need to update
appropriately

Work out on paper first (e.g. indexed face set plus
adjacent faces for each vertex)

Depends on choice of data structure (pick easy to do)

Start with simple debugging cases (make sure not
just that it looks right, but all adjacencies remain
correct)

Successive Edge Collapses

We have discussed one edge collapse, how to do that
In practice, sequence of edge collapses applied
Order etc. based on some metric (later in lecture)

So, we gradually reduce complexity of model

Progressive meshes is opposite: gradually increase
complexity

Mesh Decimation (edge collapse 3.3)

g

T
DEPE

Find faces neighboring edge v0-v1 (such as X)
Union of adjacent faces to vertex v0 and vertex v1

Update adjacency lists
For all vertices, remove that face from their adjacency list

Remove face from mesh

Outline

Basic assignment overview
Detailed discussion of mesh simplification
Progressive meshes

Quadric error metrics

Appearance Preserving

488 tris

975 tris

1,951 tris

3,905 tris

7,809 tris

Caltech & Stanford Graphics Labs and Jonathan Cohen

Progressive Meshes (3.5)

Write edge collapses to file
Read in file and invert order
Key idea is vertex-split (opposite of edge-collapse)

Include some control to make model coarser/finer

E.g. Hoppe geomorph demo

Vertex splits

Can you handle this correctly and efficiently? Debugging
examples in testpatch and plane (do these first)

View-Dependent Simplification

Simplify dynamically according to viewpoint
Visibility
Silhouettes
Lighting

GeoMorph

Implementation

Tricky
What info do you need to add something?

Work out on paper first (e.g. indexed face set
plus adjacent faces for each vertex)

Start with simple debugging cases (make sure
not just that it looks right, but all adjacencies
remain correct)

Outline

Basic assignment overview
Detailed discussion of mesh simplification
Progressive meshes

Quadric error metrics

Quadric Error Metrics

Garland & Heckbert, SIGGRAPH 97
Greedy decimation algorithm
Pair collapse (allow edge + non-edge collapses)

Quadric error metrics:
Evaluate potential collapses
Determine optimal new vertex locations

Quadric Error Metrics

Based on point-to-plane distance

Better quality than point-to-point

Quadric Error Metrics
A= (p'v)
5
=Y vpp'v
P
=v'|> pp'|v
P
=v'Qv

Common mathematical trick: quadratic form =
symmetric matrix Q multiplied twice by a vector

Initially, distance to all planes 0, net is O for all verts

Background: Computing Planes

Each triangle in mesh has associated plane
ax+by+cz+d=0

For a triangle, find its (hormalized) normal using

cross products ABXAC

‘AB~AC‘ nev—Aen=0

n=

Plane equation?

Quadric Error Metrics

Sum of squared distances from vertex to planes:

A= "Dist(v,p)’
]

V= p=

X
y
z
1

Dist(v,p)=ax+by +cz+d=p'v

Using Quadrics

Approximate error of edge collapses
Each vertex v has associated quadric Q
Error of collapsing v, and v, to v is v TQ,v’ +v’' TQ,Vv’
Quadric for new vertex v’ is Q' =Q,+Q,

Using Quadrics Using Quadrics

Find optimal location v’ after collapse: Find optimal location v’ after collapse:

Gy 9, G5 G
9 9% 9
95 s G

0 0 O

4 Gz Gy
q23 q24
93

Ay 9 9

A, 9 9n

Qs 9y G
0O 0 O

Results Quadric Visualization

Ellipsoids: iso-error surfaces

Smaller ellipsoid = greater

error for a given motion
Original Quadrics 9
Lower error for motion

parallel to surface

Lower error in flat regions

Elongated in “cylindrical”
100 tris regions

than at corners
1k tris

Results Summary

First, implement basic mesh simplification on one

edge
Helps to have right data structure
Tricky since needs to be efficient and properly update

Original . . .
Then, implement quadric error metrics
Tricky; we will spend most of another lecture on this

Quadrlcs Put edge collapses in priority queue
Problem is that when you do one, you have to update all
- the neighbors as well (just as for standard edge collapse)
ép And re-insert in queue (use appropriate data structure)
250 tris
250 tris, edge collapses only

