
1

Advanced Computer Graphics

CSE 163 [Spring 2018], Lecture 8

Ravi Ramamoorthi

http://www.cs.ucsd.edu/~ravir

To Do

§  Assignment 1, Due Apr 27
§  Any last minute issues or difficulties?

§  Assignment 2 due May 18
§  Please START EARLY. Can do most after this week
§  Contact us for difficulties, help finding partners etc.

Outline

§  Basic assignment overview

§  Detailed discussion of mesh simplification

§  Progressive meshes

§  Quadric error metrics

Assignment Overview

§  Implement complete system for mesh simplification

§  Plus progressive meshes

 Possibly challenging assignment: start very early
and proceed in incremental fashion

§  Choice of data structure for meshes is the key (read
the assignment)

§  This involves fairly recent work. No one answer
§  Think about the best way of proceeding, use creativity

Mesh Viewer (3.1)

Deliberately, no skeleton code for assignment
§  Think about and implement full system from scratch

First step: Mesh viewer
§  Read meshes (in simple OFF file format), view them
§  Should be able to reuse some code from 167 etc.

§  Please ask instructor or TA if stuck, need some help

§  Shading: must average face normals per vertex (this may
give you a start in implementing a mesh data structure)

§  Debugging modes for shading (color each triangle
 separately with an individual color)

Software Design
§  Define mesh class with display method etc.
§  Use C++ STL data structures where appropriate (see assn)

Mesh Connectivity (3.2)

Build up mesh connectivity data structure
§  Input is vertices and faces from input file

Goal is to do edge collapses in constant time
§  No iteration over whole mesh
§  Most of mesh unchanged
§  Important questions for your data structure to answer:
“What vertices neighbor my current vertex?” and
“What faces neighbor my current vertex”

§  Think about updating your data structure. Collapsing an
edge may require more than just the edge itself. You
must update every vertex or face that has changed

2

Mesh Decimation (edge collapse)

§  Can you handle this correctly and efficiently? Debugging
examples in testpatch and plane (do these first)

Mesh Decimation (edge collapse)

§  Can you handle this correctly and efficiently? Debugging
examples in testpatch and plane (do these first)

Mesh Decimation (edge collapse 3.3)

v0

v1

X

§  Create new vertex v (based on appropriate rule)

§  Find all faces/edges neighbor vertex v1 (such as A)

§  Change them to use v instead of v1. Do the same for v0

§  Depend on data structure, you need to fix all faces, edges

v

A A

 Mesh Data Structure Hints

§  Simplest (I think): Faces store constituent
vertices [indexed face set as in OFF], vertices
store adjacent faces (how do you create vertex-
face adjacency?)

§  To simplify, first create new vertex v. Adjacent
faces are those adjacent to v0 or v1

§  For each of those faces, update to point to v
instead of v0 or v1

Mesh Decimation (edge collapse 3.3)

v0

v1

X

§  Create new vertex v (based on appropriate rule like average)

§  Find all faces that neighbor vertex v1 (such as A)
§  Simple use of vertex to face adjacency

§  Change them to use v instead of v1. Do the same for v0

v

A A

Mesh Decimation (edge collapse 2.3)

v0

v1

X

§  Find faces neighboring edge v0-v1 (such as X)

§  Remove from mesh
§  This may involve updating face/vertex adjacency relationships etc.
§  E.g. what is adjacency for v (faces adjacent to vertex?)
§  Are other vertices affected in terms of adjacent faces?

§  Worry about triangle fins (extra credit, not discussed)

v

A A

3

 Mesh Data Structure Hints

§  With indexed face set plus vertex to face adjacency,
removing a face should just work (remember to delete
face from vertex adjacency lists)

§  In general, winged edge, half-edge may be (slightly)
more efficient, but also harder to implement

§  Ultimately, your choice and work out the details

§  Good luck!!

Mesh Decimation (edge collapse 3.3)

v0

v1

X

§  Find faces neighboring edge v0-v1 (such as X)
§  Union of adjacent faces to vertex v0 and vertex v1

§  Update adjacency lists
§  For all vertices, remove that face from their adjacency list

§  Remove face from mesh

v

A A

Implementation

§  Tricky

§  When you remove something, need to update
appropriately

§  Work out on paper first (e.g. indexed face set plus
adjacent faces for each vertex)

§  Depends on choice of data structure (pick easy to do)

§  Start with simple debugging cases (make sure not
just that it looks right, but all adjacencies remain
correct)

Outline

§  Basic assignment overview

§  Detailed discussion of mesh simplification

§  Progressive meshes

§  Quadric error metrics

Successive Edge Collapses

§  We have discussed one edge collapse, how to do that

§  In practice, sequence of edge collapses applied

§  Order etc. based on some metric (later in lecture)

§  So, we gradually reduce complexity of model

§  Progressive meshes is opposite: gradually increase
complexity

7,809 tris

3,905 tris

1,951 tris

488 tris

975 tris

Appearance Preserving

Caltech & Stanford Graphics Labs and Jonathan Cohen

4

Progressive Meshes (3.5)

§  Write edge collapses to file

§  Read in file and invert order

§  Key idea is vertex-split (opposite of edge-collapse)

§  Include some control to make model coarser/finer

§  E.g. Hoppe geomorph demo

GeoMorph

Vertex splits

§  Can you handle this correctly and efficiently? Debugging
examples in testpatch and plane (do these first)

Implementation

§  Tricky

§  What info do you need to add something?

§  Work out on paper first (e.g. indexed face set
plus adjacent faces for each vertex)

§  Start with simple debugging cases (make sure
not just that it looks right, but all adjacencies
remain correct)

View-Dependent Simplification

§  Simplify dynamically according to viewpoint
§  Visibility
§  Silhouettes
§  Lighting

Hoppe

Outline

§  Basic assignment overview

§  Detailed discussion of mesh simplification

§  Progressive meshes

§  Quadric error metrics

5

Quadric Error Metrics

§  Garland & Heckbert, SIGGRAPH 97

§  Greedy decimation algorithm

§  Pair collapse (allow edge + non-edge collapses)

§  Quadric error metrics:
§  Evaluate potential collapses
§  Determine optimal new vertex locations

Background: Computing Planes

§  Each triangle in mesh has associated plane

§  For a triangle, find its (normalized) normal using
cross products

§  Plane equation?

 ax + by + cz + d = 0


n =

AB×AC
AB×AC


n i

v −

A i

n = 0


n =

a
b
c

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟
d =−


A i

n

Quadric Error Metrics

§  Based on point-to-plane distance

§  Better quality than point-to-point

a b c

da

db

dc

Quadric Error Metrics

§  Sum of squared distances from vertex to planes:

Δ
v

= Dist(v,p)2

p
∑

v =

x
y
z
1

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

, p =

a
b
c
d

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

Dist(v,p) = ax + by + cz + d = pTv

Quadric Error Metrics

§  Common mathematical trick: quadratic form =
symmetric matrix Q multiplied twice by a vector

§  Initially, distance to all planes 0, net is 0 for all verts

Δ= (pTv)2

p
∑

= vTppTv
p
∑

= vT ppT

p
∑
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟
v

= vTQv

Using Quadrics

§  Approximate error of edge collapses
§  Each vertex v has associated quadric Q
§  Error of collapsing v1 and v2 to v’ is v’TQ1v’+v’TQ2v’
§  Quadric for new vertex v’ is Q’=Q1+Q2

6

Using Quadrics

§  Find optimal location v’ after collapse:

Q ' =

q11 q12 q13 q14

q12 q22 q23 q24

q13 q23 q33 q34

q14 q24 q34 q44

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

min
v '

v 'T Q 'v ' : ∂
∂x = ∂

∂y = ∂
∂z = 0

Using Quadrics

§  Find optimal location v’ after collapse:

q11 q12 q13 q14

q12 q22 q23 q24

q13 q23 q33 q34

0 0 0 1

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

v ' =

0
0
0
1

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

v ' =

q11 q12 q13 q14

q12 q22 q23 q24

q13 q23 q33 q34

0 0 0 1

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

−1

0
0
0
1

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

Results

Original

1k tris 100 tris

Quadrics

Quadric Visualization

§  Ellipsoids: iso-error surfaces

§  Smaller ellipsoid = greater
error for a given motion

§  Lower error for motion
parallel to surface

§  Lower error in flat regions
than at corners

§  Elongated in “cylindrical”
regions

Results

Original

250 tris, edge collapses only
250 tris

Quadrics

Summary

§  First, implement basic mesh simplification on one
edge

§  Helps to have right data structure
§  Tricky since needs to be efficient and properly update

§  Then, implement quadric error metrics
§  Tricky; we will spend most of another lecture on this
§  Put edge collapses in priority queue
§  Problem is that when you do one, you have to update all

the neighbors as well (just as for standard edge collapse)
§  And re-insert in queue (use appropriate data structure)

