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Advanced Computer Graphics 

CSE 163 [Spring 2018], Lecture 7 

Ravi Ramamoorthi 

http://www.cs.ucsd.edu/~ravir 

To Do  

§  Assignment 1, Due Apr 27 
§  Any last minute issues or difficulties? 

§  Starting Geometry Processing 
§  Assignment 2 due May 18 
§  This lecture starts discussing relevant content 
§  Please START EARLY.  Can do most after this week 
§  Contact us for difficulties, help finding partners etc. 

 

Motivation 

§  A polygon mesh is a collection of triangles 

§  We want to do operations on these triangles 
§  E.g. walk across the mesh for simplification 
§  Display for rendering 
§  Computational geometry 

§  Best representations (mesh data structures)? 
§  Compactness 
§  Generality 
§  Simplicity for computations 
§  Efficiency 

Desirable Characteristics 1  
§  Generality – from most general to least 

§  Polygon soup 
§  Only triangles 
§  2-manifold: ≤ 2 triangles per edge 
§  Orientable: consistent CW / CCW winding 
§  Closed: no boundary 

§  Compact storage 

Mesh Data Structures 

Mesh Data Structures 

Desirable characteristics 2 
§  Efficient support for operations: 

§  Given face, find its vertices 
§  Given vertex, find faces touching it 
§  Given face, find neighboring faces 
§  Given vertex, find neighboring vertices 
§  Given edge, find vertices and faces it touches 

§  These are adjacency operations important in mesh 
simplification (homework), many other applications 

Outline  

§  Independent faces 

§  Indexed face set 

§  Adjacency lists 

§  Winged-edge 

§  Half-edge 

Overview of mesh decimation and simplification 
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Independent Faces 

Faces list vertex coordinates 
§  Redundant vertices 
§  No topology information 

Face Table 
F0: (x0,y0,z0), (x1,y1,z1), (x2,y2,z2) 
F1: (x3,y3,z3), (x4,y4,z4), (x5,y5,z5) 
F2: (x6,y6,z6), (x7,y7,z7), (x8,y8,z8) 

F0 

F1 

F2 

Indexed Face Set 

§  Faces list vertex references – “shared vertices” 

§  Commonly used (e.g. OFF file format itself) 

§  Augmented versions simple for mesh processing 

Vertex Table 
v0: (x0,y0,z0) 
v1: (x1,y1,z1) 
v2: (x2,y2,z2) 
v3: (x3,y3,z3) 
v4: (x4,y4,z4) 

Face Table 
F0: 0, 1, 2 
F1: 1, 4, 2 
F2: 1, 3, 4 

Note CCW ordering 

F0 

F1 
F2 

v0 v1 v3 

v4 v2 

Indexed Face Set 

§  Storage efficiency? 

§  Which operations supported in O(1) time? 

Vertex Table 
v0: (x0,y0,z0) 
v1: (x1,y1,z1) 
v2: (x2,y2,z2) 
v3: (x3,y3,z3) 
v4: (x4,y4,z4) 

Face Table 
F0: 0, 1, 2 
F1: 1, 4, 2 
F2: 1, 3, 4 

Note CCW ordering 

F0 

F1 
F2 

v0 v1 v3 

v4 v2 

Efficient Algorithm Design 

§  Can sometimes design algorithms to compensate 
for operations not supported by data structures 

§  Example: per-vertex normals 
§  Average normal of faces touching each vertex 
§  With indexed face set, vertex è face is O(n) 
§  Naive algorithm for all vertices: O(n2) 
§  Can you think of an O(n) algorithm? 

Efficient Algorithm Design 

§  Can sometimes design algorithms to compensate 
for operations not supported by data structures 

§  Example: per-vertex normals 
§  Average normal of faces touching each vertex 
§  With indexed face set, vertex è face is O(n) 
§  Naive algorithm for all vertices: O(n2) 
§  Can you think of an O(n) algorithm? 

§  Useful to augment with vertex è face adjacency 
§  For all vertices, find adjacent faces as well 
§  Can be implemented while simply looping over faces 

Outline  

§  Independent faces 

§  Indexed face set 

§  Adjacency lists 

§  Winged-edge 

§  Half-edge 

Overview of mesh decimation and simplification 
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Full Adjacency Lists 

§  Store all vertex, face, 
and edge adjacencies 

F0 

F1 
F2 

v0 v1 v3 

v4 v2 

e2 

e0 e3 

e4 

e6 

e1 
e5 

Edge Adjacency Table 
e0: v0, v1; F0,ø; ø,e2,e1,ø 
e1: v1,v2; F0,F1; e5,e0,e2,e6 …

 

Face Adjacency Table 
F0: v0,v1,v2; F1,ø,ø; e0,e2,e1 
F1: v1,v4,v2; ø,F0,F2; e6,e1,e5 
F2: v1,v3,v4; ø,F1,ø; e4,e5,e3 

Vertex Adjacency Table 
v0: v1,v2; F0; e0,e2 
v1: v3,v4,v2,v0; F2,F1,F0; e3,e5,e1,e0 …

 

Full adjacency: Issues 

§  Garland and Heckbert claim they do this 

§  Easy to find stuff 

§  Issue is storage 

§  And updating everything once you do something 
like an edge collapse for mesh simplification 

§  I recommend you implement something simpler 
(like indexed face set plus vertex to face adjacency) 

Partial Adjacency Lists 

§  Store some adjacencies, 
use to derive others 

§  Many possibilities… 

Edge Adjacency Table 
e0: v0, v1; F0,ø; ø,e2,e1,ø 
e1: v1,v2; F0,F1; e5,e0,e2,e6 …

 

Face Adjacency Table 
F0: v0,v1,v2; F1,ø,ø; e0,e2,e1 
F1: v1,v4,v2; ø,F0,F2; e6,e1,e5 
F2: v1,v3,v4; ø,F1,ø; e4,e5,e3 

Vertex Adjacency Table 
v0: v1,v2; F0; e0,e2 
v1: v3,v4,v2,v0; F2,F1,F0; e3,e5,e1,e0 …

 

F0 

F1 
F2 

v0 v1 v3 

v4 v2 

e2 

e0 e3 

e4 

e6 

e1 
e5 

Partial Adjacency Lists 

§  Some combinations only 
make sense for closed 
manifolds 

Edge Adjacency Table 
e0: v0, v1; F0,ø; ø,e2,e1,ø 
e1: v1,v2; F0,F1; e5,e0,e2,e6 …

 

Face Adjacency Table 
F0: v0,v1,v2; F1,ø,ø; e0,e2,e1 
F1: v1,v4,v2; ø,F0,F2; e6,e1,e5 
F2: v1,v3,v4; ø,F1,ø; e4,e5,e3 

Vertex Adjacency Table 
v0: v1,v2; F0; e0,e2 
v1: v3,v4,v2,v0; F2,F1,F0; e3,e5,e1,e0 …

 

F0 

F1 
F2 

v0 v1 v3 

v4 v2 

e2 

e0 e3 

e4 

e6 

e1 
e5 

Outline  

§  Independent faces 

§  Indexed face set 

§  Adjacency lists 

§  Winged-edge 

§  Half-edge 

Overview of mesh decimation and simplification 

Winged, Half Edge Representations 

§  Idea is to associate information with edges 

§  Compact Storage 

§  Many operations efficient 

§  Allow one to walk around mesh 

§  Usually general for arbitrary polygons (not triangles) 

§  But implementations can be complex with special 
cases relative to simple indexed face set++ or partial 
adjacency table 
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Winged Edge 

§  Most data stored at edges 

§  Vertices, faces point to 
one edge each 

Edge Adjacency Table 
e0: v0, v1; F0, ø; ø,e2,e1, ø 
e1: v1,v2; F0,F1; e5,e0,e2,e6 …

 

Face Adjacency Table 
F0: v0,v1,v2; F1, ø, ø; e0,e2,e1 
F1: v1,v4,v2; ø,F0,F2; e6,e1,e5 
F2: v1,v3,v4; ø,F1, ø; e4,e5,e3 

Vertex Adjacency Table 
v0: v1,v2; F0; e0,e2 
v1: v3,v4,v2,v0; F2,F1,F0; e3,e5,e1,e0 …

 

F0 

F1 
F2 

v0 v1 v3 

v4 v2 

e2 

e0 e3 

e4 

e6 

e1 
e5 

Winged Edge 

§  Each edge stores 2 
vertices, 2 faces, 4 edges – 
fixed size 

§  Enough information to 
completely “walk around” 
faces or vertices 

§  Think how to implement 
§  Walking around vertex 
§  Finding neighborhood of face 
§  Other ops for simplification 

vbegin 

vend 

Fleft Fright 

eforw,right eforw,left 

eback,left eback,right 

Half Edge 

§  Instead of single edge, 
2 directed “half edges” 

§  Makes some operations 
more efficient 

§  Walk around face very 
easily (each face need 
only store one pointer) 

vbegin 

henext 

Fleft heinv 

HalfEdge Data Structure (example) 
 class HalfEdge {  // Only one example, some critical functions 

   public: 

      HalfEdgeIter next;    // points to the next halfedge around the current face 

      HalfEdgeIter flip;      // points to the other halfedge associated with this edge 

      VertexIter vertex;     // points to the vertex at the "tail" of this halfedge 

      EdgeIter edge;         // points to the edge associated with this halfedge 

      FaceIter face;           // points to the face containing this halfedge 

      bool onBoundary;    // true if this halfedge is contained in a boundary 

                                      // loop; false otherwise 

      } ;  

From Keenan Crane Geometry Processing code  

https://github.com/dgpdec/course but write your own version 

 

HalfEdge Walk Around Faces 
 int Vertex :: valence( void ) const {   // returns the number of incident faces 

      int n = 0; 

      HalfEdgeCIter h = he;    // Start loop with half-edge for that vertex 

      do { 

         n++;                            // Increment Valence.  Other operations similarly 

                                            // For area,  A += h -> face -> area() ;  

         h = h->flip->next;        // Next Face.  Why does this work? 

       } 

      while( h != he );             // Stop when loop is complete.  How does this work? 

      return n; 

   } 

From Keenan Crane Geometry Processing code  

https://github.com/dgpdec/course but write your own version 

 

Outline  

§  Independent faces 

§  Indexed face set 

§  Adjacency lists 

§  Winged-edge 

§  Half-edge 

Overview of mesh decimation and simplification 
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Mesh Decimation 

Triangles
: 41,855 
27,970 
20,922 
12,939 
8,385 
4,766 

Division, Viewpoint, Cohen 

Mesh Decimation 

§  Reduce number of polygons 
§  Less storage 
§  Faster rendering 
§  Simpler manipulation 

§  Desirable properties 
§  Generality 
§  Efficiency 
§  Produces “good” approximation 

Michelangelo’s St. Matthew 
Original model: ~400M polygons 

Primitive Operations 

Simplify model a bit at a time by 
removing a few faces 
§  Repeated to simplify whole mesh 

Types of operations 
§  Vertex cluster 
§  Vertex remove 
§  Edge collapse (main operation used in assignment) 

Vertex Cluster 

§  Method 
§  Merge vertices based on proximity 
§  Triangles with repeated vertices can collapse to edges or points 

§  Properties 
§  General and robust 
§  Can be unattractive if results in topology change 

Vertex Remove 

§  Method 
§  Remove vertex and adjacent faces 
§  Fill hole with new triangles (reduction of 2) 

§  Properties 
§  Requires manifold surface, preserves topology 
§  Typically more attractive 
§  Filling hole well not always easy 

Edge Collapse 

§  Method 
§  Merge two edge vertices to one 
§  Delete degenerate triangles 

§  Properties 
§  Special case of vertex cluster 
§  Allows smooth transition 
§  Can change topology 
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Mesh Decimation/Simplification 

Typical: greedy algorithm 
§  Measure error of possible “simple” operations 

(primarily edge collapses) 
§  Place operations in queue according to error 
§  Perform operations in queue successively (depending 

on how much you want to simplify model) 
§  After each operation, re-evaluate error metrics 

Geometric Error Metrics 

§  Motivation 
§  Promote accurate 3D shape preservation 
§  Preserve screen-space silhouettes and pixel 

coverage 

§  Types 
§  Vertex-Vertex Distance 
§  Vertex-Plane Distance 
§  Point-Surface Distance 
§  Surface-Surface Distance 

Vertex-Vertex Distance 

§  E = max(|v3−v1|, |v3−v2|) 

§  Appropriate during topology changes 
§  Rossignac and Borrel 93 
§  Luebke and Erikson 97 

§  Loose for topology-preserving collapses 

v1 v2 

v3 

Vertex-Plane Distance 

§  Store set of planes with each vertex 
§  Error based on distance from vertex to planes 
§  When vertices are merged, merge sets 

§  Ronfard and Rossignac 96 
§  Store plane sets, compute max distance 

§  Error Quadrics – Garland and Heckbert 97 
§  Store quadric form, compute sum of squared distances 

a b c 

da 

db 

dc 

Point-Surface Distance 

§  For each original vertex, 
find closest point on simplified surface 

§  Compute sum of squared distances 

Surface-Surface Distance 

   Compute or approximate maximum distance 
between input and simplified surfaces 
§  Tolerance Volumes - Guéziec 96 
§  Simplification Envelopes - Cohen/Varshney 96 
§  Hausdorff Distance - Klein 96 
§  Mapping Distance - Bajaj/Schikore 96, Cohen et al. 97 
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Geometric Error Observations 

§  Vertex-vertex and vertex-plane distance 
§  Fast 
§  Low error in practice, but not guaranteed by metric 

§  Surface-surface distance 
§  Required for guaranteed error bounds 

Edge swap 

vertex-vertex ≠ surface-surface 

Mesh Simplification 

Advanced Considerations 

§  Type of input mesh? 

§  Modifies topology? 

§  Continuous LOD? 

§  Speed vs. quality? 

View-Dependent Simplification 

§  Simplify dynamically according to viewpoint 
§  Visibility 
§  Silhouettes 
§  Lighting 

Hoppe 
7,809 tris 

3,905 tris 

1,951 tris 

488 tris 

975 tris 

Appearance Preserving 

Caltech & Stanford Graphics Labs and Jonathan Cohen 

Summary 

§  Many mesh data structures 
§  Compact storage vs ease, efficiency of use 
§  How fast and easy are key operations  

§  Mesh simplification 
§  Reduce size of mesh in efficient quality-preserving way 
§  Based on edge collapses mainly 

§  Choose appropriate mesh data structure 
§  Efficient to update, edge-collapses are local 

§  Fairly modern ideas (last ~20 years) 
§  Think about some of it yourself, see papers given out 
§  We will cover simplification, quadric metrics next 


