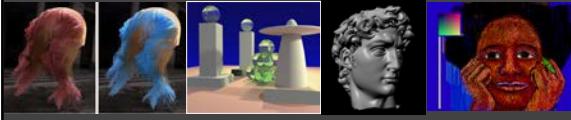


Advanced Computer Graphics

CSE 163 [Spring 2018], Lecture 7

Ravi Ramamoorthi

<http://www.cs.ucsd.edu/~ravir>



To Do

- Assignment 1, Due Apr 27
 - Any last minute issues or difficulties?
- Starting Geometry Processing
 - Assignment 2 due May 18
 - This lecture starts discussing relevant content
 - Please START EARLY. Can do most after this week
 - Contact us for difficulties, help finding partners etc.

Motivation

- A polygon mesh is a collection of triangles
- We want to do operations on these triangles
 - E.g. walk across the mesh for simplification
 - Display for rendering
 - Computational geometry
- Best representations (mesh data structures)?
 - Compactness
 - Generality
 - Simplicity for computations
 - Efficiency

Mesh Data Structures

Desirable Characteristics 1

- Generality – from most general to least
 - Polygon soup
 - Only triangles
 - 2-manifold: ≤ 2 triangles per edge
 - Orientable: consistent CW / CCW winding
 - Closed: no boundary
- Compact storage

Mesh Data Structures

Desirable characteristics 2

- Efficient support for operations:
 - Given face, find its vertices
 - Given vertex, find faces touching it
 - Given face, find neighboring faces
 - Given vertex, find neighboring vertices
 - Given edge, find vertices and faces it touches
- These are adjacency operations important in mesh simplification (homework), many other applications

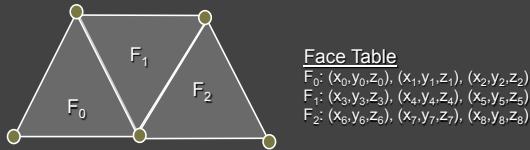
Outline

- *Independent faces*
- *Indexed face set*
- *Adjacency lists*
- *Winged-edge*
- *Half-edge*

Overview of mesh decimation and simplification

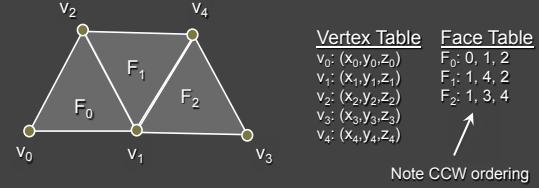
Independent Faces

- Faces list vertex coordinates
 - Redundant vertices
 - No topology information



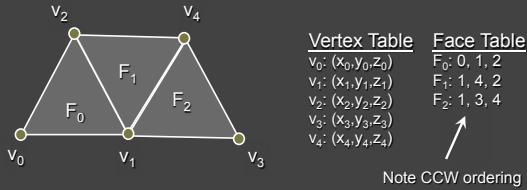
Indexed Face Set

- Faces list vertex references – “shared vertices”
- Commonly used (e.g. OFF file format itself)
- Augmented versions simple for mesh processing



Indexed Face Set

- Storage efficiency?
- Which operations supported in $O(1)$ time?



Efficient Algorithm Design

- Can sometimes design algorithms to compensate for operations not supported by data structures
- Example: per-vertex normals
 - Average normal of faces touching each vertex
 - With indexed face set, vertex \rightarrow face is $O(n)$
 - Naive algorithm for all vertices: $O(n^2)$
 - Can you think of an $O(n)$ algorithm?

Efficient Algorithm Design

- Can sometimes design algorithms to compensate for operations not supported by data structures
- Example: per-vertex normals
 - Average normal of faces touching each vertex
 - With indexed face set, vertex \rightarrow face is $O(n)$
 - Naive algorithm for all vertices: $O(n^2)$
 - Can you think of an $O(n)$ algorithm?
- Useful to augment with vertex \rightarrow face adjacency
 - For all vertices, find adjacent faces as well
 - Can be implemented while simply looping over faces

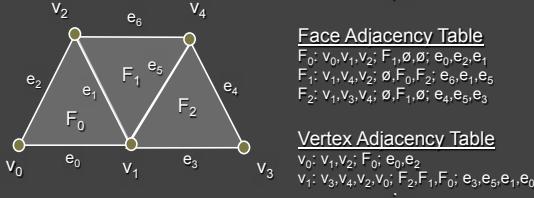
Outline

- Independent faces
- Indexed face set
- Adjacency lists
- Winged-edge
- Half-edge

Overview of mesh decimation and simplification

Full Adjacency Lists

- Store all vertex, face, and edge adjacencies



Edge Adjacency Table

$e_0: v_0, v_1; F_0, \emptyset; \emptyset, e_2, e_1, \emptyset$
 $e_1: v_1, v_2; F_0, F_1; e_5, e_0, e_2, e_6$
 \vdots

Face Adjacency Table

$F_0: v_0, v_1, v_2; F_1, \emptyset, \emptyset; e_0, e_2, e_1$
 $F_1: v_1, v_2, v_4; \emptyset, F_0, F_2; e_6, e_4, e_5$
 $F_2: v_1, v_3, v_4; \emptyset, F_1, \emptyset; e_4, e_5, e_3$

Vertex Adjacency Table

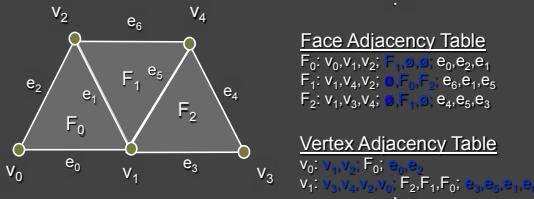
$v_0: v_1, v_2; F_0, \emptyset, e_0, e_2$
 $v_1: v_0, v_2, v_3, v_4; F_0, F_1, F_2, e_0, e_3, e_5, e_1, e_0$
 \vdots

Full adjacency: Issues

- Garland and Heckbert claim they do this
- Easy to find stuff
- Issue is storage
- And updating everything once you do something like an edge collapse for mesh simplification
- I recommend you implement something simpler (like indexed face set plus vertex to face adjacency)

Partial Adjacency Lists

- Store some adjacencies, use to derive others
- Many possibilities...



Edge Adjacency Table

$e_0: v_0, v_1; F_0, \emptyset; \emptyset, e_2, e_1, \emptyset$
 $e_1: v_1, v_2; F_0, F_1; e_5, e_0, e_2, e_6$
 \vdots

Face Adjacency Table

$F_0: v_0, v_1, v_2; F_1, \emptyset, \emptyset; e_0, e_2, e_1$
 $F_1: v_1, v_2, v_4; \emptyset, F_0, F_2; e_6, e_4, e_5$
 $F_2: v_1, v_3, v_4; \emptyset, F_1, \emptyset; e_4, e_5, e_3$

Vertex Adjacency Table

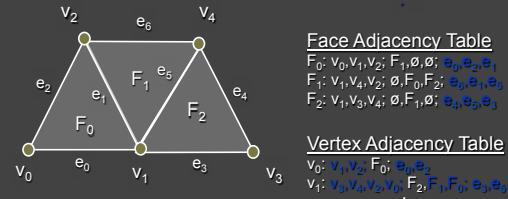
$v_0: v_1, v_2; F_0, \emptyset, e_0, e_2$
 $v_1: v_0, v_2, v_3, v_4; F_0, F_1, F_2, e_0, e_3, e_5, e_1, e_0$
 \vdots

Partial Adjacency Lists

- Some combinations only make sense for closed manifolds

Edge Adjacency Table

$e_0: v_0, v_1; F_0, \emptyset; \emptyset, e_2, e_1, \emptyset$
 $e_1: v_1, v_2; F_0, F_1; e_5, e_0, e_2, e_6$
 \vdots



Face Adjacency Table

$F_0: v_0, v_1, v_2; F_1, \emptyset, \emptyset; e_0, e_2, e_1$
 $F_1: v_1, v_2, v_4; \emptyset, F_0, F_2; e_6, e_4, e_5$
 $F_2: v_1, v_3, v_4; \emptyset, F_1, \emptyset; e_4, e_5, e_3$

Vertex Adjacency Table

$v_0: v_1, v_2; F_0, \emptyset, e_0, e_2$
 $v_1: v_0, v_2, v_3, v_4; F_0, F_1, F_2, e_0, e_3, e_5, e_1, e_0$
 \vdots

Outline

- Independent faces
- Indexed face set
- Adjacency lists
- Winged-edge
- Half-edge

Overview of mesh decimation and simplification

Winged, Half Edge Representations

- Idea is to associate information with edges
- Compact Storage
- Many operations efficient
- Allow one to walk around mesh
- Usually general for arbitrary polygons (not triangles)
- But implementations can be complex with special cases relative to simple indexed face set++ or partial adjacency table

Winged Edge

- Most data stored at edges
- Vertices, faces point to one edge each

Edge Adjacency Table

e_0 :	$v_0, v_1, F_0, \emptyset; \emptyset, e_2, e_1, \emptyset$
e_1 :	$v_1, v_2, F_0, F_1; e_5, e_6, e_2, e_6$
\vdots	

Face Adjacency Table

F_0 :	$v_0, v_1, v_2, F_1, \emptyset, \emptyset; e_0, e_2, e_1$
F_1 :	$v_1, v_4, v_2, \emptyset, F_0, F_2; e_6, e_4, e_5$
F_2 :	$v_1, v_3, v_4, \emptyset, F_1, \emptyset, \emptyset; e_4, e_5, e_3$

Vertex Adjacency Table

v_0 :	v_1, v_2, F_0, e_0, e_2
v_1 :	$v_0, v_4, v_2, v_3, F_0, F_1, F_2, e_3, e_5, e_1, e_0$
\vdots	

Winged Edge

- Each edge stores 2 vertices, 2 faces, 4 edges – fixed size
- Enough information to completely “walk around” faces or vertices
- Think how to implement
 - Walking around vertex
 - Finding neighborhood of face
 - Other ops for simplification

Half Edge

- Instead of single edge, 2 directed “half edges”
- Makes some operations more efficient
- Walk around face very easily (each face need only store one pointer)

HalfEdge Data Structure (example)

```
class HalfEdge { // Only one example, some critical functions
public:
    HalfEdge* next; // points to the next halfedge around the current face
    HalfEdge* flip; // points to the other halfedge associated with this edge
    Vertex* vertex; // points to the vertex at the "tail" of this halfedge
    Edge* edge; // points to the edge associated with this halfedge
    Face* face; // points to the face containing this halfedge
    bool onBoundary; // true if this halfedge is contained in a boundary
                     // loop; false otherwise
};

From Keenan Crane Geometry Processing code
https://github.com/dgpdcc/course but write your own version
```

HalfEdge Walk Around Faces

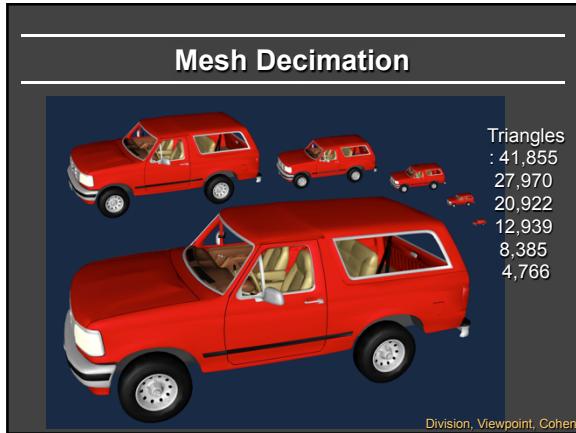
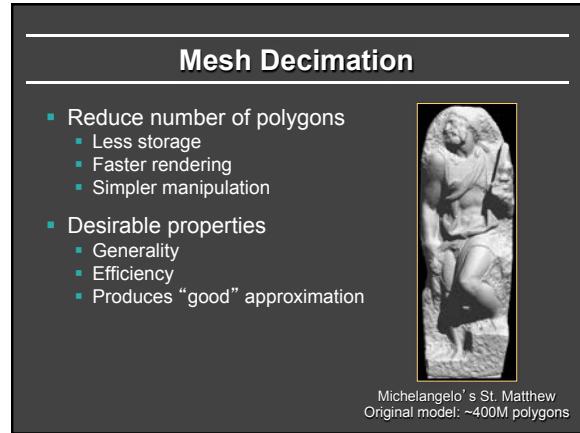
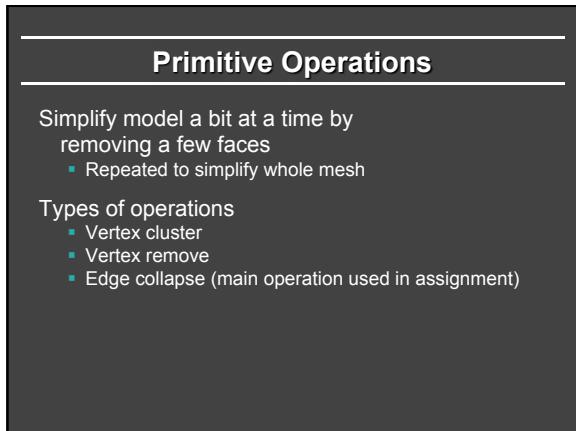
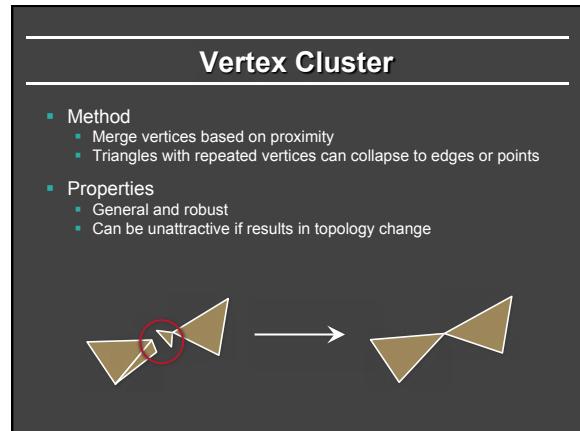
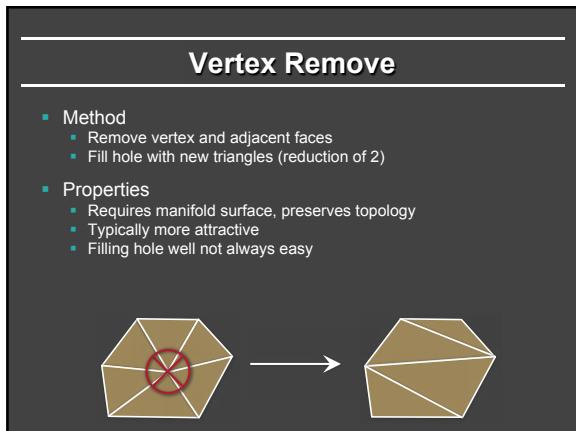
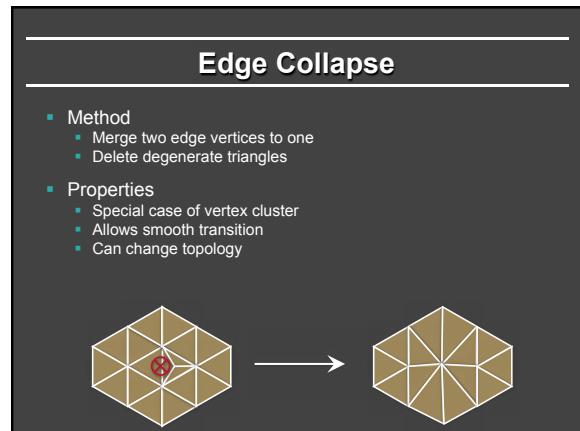
```
int Vertex::valence( void ) const { // returns the number of incident faces
    int n = 0;
    HalfEdgeCIter h = he; // Start loop with half-edge for that vertex
    do {
        n++; // Increment Valence. Other operations similarly
        // For area, A += h->face->area();
        h = h->flip->next; // Next Face. Why does this work?
    }
    while( h != he ); // Stop when loop is complete. How does this work?
    return n;
}

From Keenan Crane Geometry Processing code
https://github.com/dgpdcc/course but write your own version
```

Outline

- Independent faces
- Indexed face set
- Adjacency lists
- Winged-edge
- Half-edge

Overview of mesh decimation and simplification



Mesh Decimation/Simplification

Typical: greedy algorithm

- Measure error of possible “simple” operations (primarily edge collapses)
- Place operations in queue according to error
- Perform operations in queue successively (depending on how much you want to simplify model)
- After each operation, re-evaluate error metrics

Geometric Error Metrics

Motivation

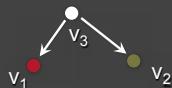
- Promote accurate 3D shape preservation
- Preserve screen-space silhouettes and pixel coverage

Types

- Vertex-Vertex Distance
- Vertex-Plane Distance
- Point-Surface Distance
- Surface-Surface Distance

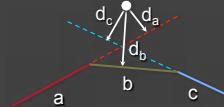
Vertex-Vertex Distance

- $E = \max(|v_3-v_1|, |v_3-v_2|)$
- Appropriate during topology changes
 - Rossignac and Borrel 93
 - Luebke and Erikson 97
- Loose for topology-preserving collapses



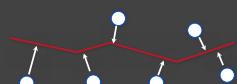
Vertex-Plane Distance

- Store set of planes with each vertex
 - Error based on distance from vertex to planes
 - When vertices are merged, merge sets
- Ronfard and Rossignac 96
 - Store plane sets, compute max distance
- Error Quadrics – Garland and Heckbert 97
 - Store quadric form, compute sum of squared distances



Point-Surface Distance

- For each original vertex, find closest point on simplified surface
- Compute sum of squared distances



Surface-Surface Distance

Compute or approximate maximum distance between input and simplified surfaces

- Tolerance Volumes - Guéziec 96
- Simplification Envelopes - Cohen/Varshney 96
- Hausdorff Distance - Klein 96
- Mapping Distance - Bajaj/Schikore 96, Cohen et al. 97

Geometric Error Observations

- Vertex-vertex and vertex-plane distance
 - Fast
 - Low error in practice, but not guaranteed by metric
- Surface-surface distance
 - Required for guaranteed error bounds

vertex-vertex \neq surface-surface

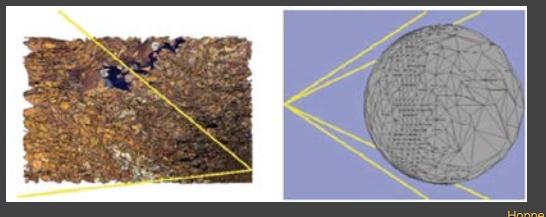
Mesh Simplification

Advanced Considerations

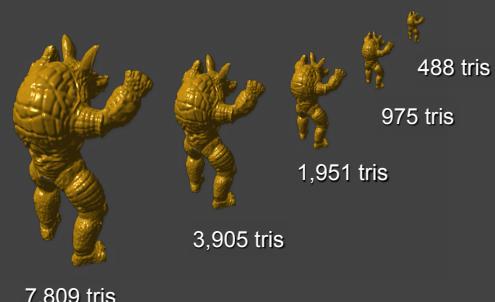
- Type of input mesh?
- Modifies topology?
- Continuous LOD?
- Speed vs. quality?

View-Dependent Simplification

- Simplify dynamically according to viewpoint
 - Visibility
 - Silhouettes
 - Lighting



Appearance Preserving



Summary

- Many mesh data structures
 - Compact storage vs ease, efficiency of use
 - How fast and easy are key operations
- Mesh simplification
 - Reduce size of mesh in efficient quality-preserving way
 - Based on edge collapses mainly
- Choose appropriate mesh data structure
 - Efficient to update, edge-collapses are local
- Fairly modern ideas (last ~20 years)
 - Think about some of it yourself, see papers given out
 - We will cover simplification, quadric metrics next