Advanced Computer Graphics

CSE 163 [Spring 2018], Lecture 7

Ravi Ramamoorthi

http://www.cs.ucsd.edu/~ravir

wl &

Motivation

A polygon mesh is a collection of triangles

We want to do operations on these triangles
E.g. walk across the mesh for simplification
Display for rendering
Computational geometry

Best representations (mesh data structures)?
Compactness
Generality
Simplicity for computations
Efficiency

Mesh Data Structures

Desirable characteristics 2

Efficient support for operations:
Given face, find its vertices
Given vertex, find faces touching it
Given face, find neighboring faces
Given vertex, find neighboring vertices
Given edge, find vertices and faces it touches

To Do
Assignment 1, Due Apr 27
Any last minute issues or difficulties?

Starting Geometry Processing
Assignment 2 due May 18
This lecture starts discussing relevant content
Please START EARLY. Can do most after this week
Contact us for difficulties, help finding partners etc.

Mesh Data Structures

Desirable Characteristics 1

Generality — from most general to least
Polygon soup
Only triangles
2-manifold: < 2 triangles per edge
Orientable: consistent CW / CCW winding
Closed: no boundary

Compact storage

Outline

Independent faces
Indexed face set
Adjacency lists
Winged-edge
Half-edge

These are adjacency operations important in mesh

simplification (homework), many other applications Overview of mesh decimation and simplification

Independent Faces

Faces list vertex coordinates
Redundant vertices
No topology information

Face Table

For (X0:Y0:Z0)s (X1:¥1,21), (X2Y2.25)
F1: (X3,Y3,23), (X4,Y4:Z4), (X5,Y5:25)
F2i (X6,Ye1Z6), (X7,Y7,27), (Xe,Ye,Zs)

Indexed Face Set

Storage efficiency?

Which operations supported in O(1) time?

Vertex Table Fa
Vo! (X0,Y0:20) -0

Note CCW ordering

Efficient Algorithm Design

Can sometimes design algorithms to compensate
for operations not supported by data structures

Example: per-vertex normals
Average normal of faces touching each vertex
With indexed face set, vertex = face is O(n)
Naive algorithm for all vertices: O(n?)
Can you think of an O(n) algorithm?

Useful to augment with vertex =» face adjacency
For all vertices, find adjacent faces as well
Can be implemented while simply looping over faces

Indexed Face Set

Faces list vertex references — “shared vertices”
Commonly used (e.g. OFF file format itself)
Augmented versions simple for mesh processing

Vv, Vy

Vertex Table Face Table
Vo (X0,Y0,Zo) Fe:0,1,2
Vi (X4,Y1,24) Fi:1,4,2

.) F,:1,3,4

/

Note CCW ordering

Efficient Algorithm Design
Can sometimes design algorithms to compensate
for operations not supported by data structures

Example: per-vertex normals
Average normal of faces touching each vertex
With indexed face set, vertex = face is O(n)
Naive algorithm for all vertices: O(n?)
Can you think of an O(n) algorithm?

Outline

Independent faces
Indexed face set
Adjacency lists
Winged-edge
Half-edge

Overview of mesh decimation and simplification

Full Adjacency Lists Full adjacency: Issues

Store all vertex, face, £ dae Adi b Garland and Heckbert claim they do this
and edge adjacencies £dge Aciacency “able .
ge adj €' Vo Vi Fo8; 9,6,,81,0 Easy to find stuff
€1: Vy,Vy; Fo,Fy; €5,60,65,66
: Issue is storage
v, Vy
Face Adjacency Table And updating everything once you do something
Fo: VoV, V2 F4,0,0; €0,€5€4 like an edge collapse for mesh simplification
Fii Vi,V Vo, 8,F0,F); €6,64,65
Fai ViVa Ve 6,0, €4,8585 | recommend you implement something simpler
Vertex Adiacency Table (like indexed face set plus vertex to face adjacency)
Vi Vq,V; Fo; 0,65
V4t V3,V Vo,Vo; Fo,F 1, Fo; €3,65.64,60

Partial Adjacency Lists Partial Adjacency Lists

Store some adjacencies, S - Some combinations only
i Edge Adjacency 1able
use to derive others CressoEumid Bl make sense for closed
0- Y0r V1o ' 0% .
o ; :FoFy: manifolds
Many possibilities... 5
\Z Vy : Va Va
Eace Adjacency Table - Face Adjacency Table
Fo: Vo,Va,Va; €0,€5,€4 Fo: Vo, V1.V Fy,2,0;
Fiivivy, €6,61,65 Foiivy,vy,Vy; 8,F0,F);
Foi Vi,Va,Vy; €4,€5,63 Fo: v,V vy 8,F4,8;

€6

Vertex Adjacency Table Y4 Vertex Adjacency Table
Vo: Fo: . Vo: Fo:
A7 »,F1,Fo; 7 F,

Outline Winged, Half Edge Representations

Independent faces Idea is to associate information with edges

Indexed face set Compact Storage

Adjacency lists Many operations efficient

Winged-edge Allow one to walk around mesh

Half-edge Usually general for arbitrary polygons (not triangles)

But implementations can be complex with special
cases relative to simple indexed face set++ or partial

Overview of mesh decimation and simplification)
adjacency table

Winged Edge Winged Edge

Most data stored at edges . Each edge stores 2
Eduz 2cleconcy Tabls vertices, 2 faces, 4 edges —

Vertices, faces point to €0: Vo, Vi; Fo, 25 0,6,,64, 0 .)
one edge each €41 V4,Vp; Fo,Fy; €5,60,62.86 fixed size
Vy .

eforw,leﬂ eforw,right

Enough information to

Face Adjacency Table completely “walk around”
: :rw faces or vertices
o
= Think how to implement
. Walking around vertex
Vgrtex SUIECERCYAIEIIE Finding neighborhood of face

Vo € . .
vi: e Other ops for simplification e,

Half Edge HalfEdge Data Structure (example)

class HalfEdge { // Only one example, some critical functions

Instead of single edge,
2 directed “half edges” s

HalfEdgelter next; // points to the next halfedge around the current face
Makes some operations HalfEdgelter flip; // points to the other halfedge associated with this edge
more efficient Vertexlter vertex; // points to the vertex at the "tail" of this halfedge
Walk around face very Edgelter edge; /I points to the edge associated with this halfedge

il (each face need Facelter face; /I points to the face containing this halfedge

eaISI yt i bool onBoundary; // true if this halfedge is contained in a boundary
Gy SIS s [t er) /I loop; false otherwise

b

From Keenan Crane Geometry Processing code

but write your own version

HalfEdge Walk Around Faces Outline

int Vertex :: valence(void) const { // returns the number of incident faces
intn=0; Independent faces
HalfEdgeClter h = he; // Start loop with half-edge for that vertex
Indexed face set

do{
n++; I Increment Valence. Other operations similarly Adjacency lists
Il For area, A +=h ->face ->area(); .
h = h->flip->next; /I Next Face. Why does this work? nged_edge
} Half-edge

while(h != he); /I Stop when loop is complete. How does this work?

return n;

} Overview of mesh decimation and simplification

From Keenan Crane Geometry Processing code

but write your own version

Mesh Decimation

Triangles
: 41,855
27,970
20,922
12,939
8,385
4,766

Division, Viewpoint, Cohen

Primitive Operations

Simplify model a bit at a time by
removing a few faces
Repeated to simplify whole mesh

Types of operations
Vertex cluster
Vertex remove

Edge collapse (main operation used in assignment)

Vertex Remove

Method
Remove vertex and adjacent faces
Fill hole with new triangles (reduction of 2)

Properties

Requires manifold surface, preserves topology
Typically more attractive
Filling hole well not always easy

Mesh Decimation

Reduce number of polygons
Less storage
Faster rendering
Simpler manipulation

Desirable properties
Generality
Efficiency
Produces “good” approximation

Michelangelo’ s St. Matthew.
Original model: ~400M polygons

Vertex Cluster

Method
Merge vertices based on proximity
Triangles with repeated vertices can collapse to edges or points

Properties

General and robust
Can be unattractive if results in topology change

va‘fﬁ — V4

Edge Collapse

Method
Merge two edge vertices to one
Delete degenerate triangles

Properties
Special case of vertex cluster
Allows smooth transition
Can change topology

Mesh Decimation/Simplification

Typical: greedy algorithm
Measure error of possible “simple” operations
(primarily edge collapses)
Place operations in queue according to error

Perform operations in queue successively (depending

on how much you want to simplify model)
After each operation, re-evaluate error metrics

Vertex-Vertex Distance

E = max(|v3-v1|, |[v3-v2|)

Appropriate during topology changes
Rossignac and Borrel 93
Luebke and Erikson 97

Loose for topology-preserving collapses

/N

1 2

Point-Surface Distance

For each original vertex,
find closest point on simplified surface

Compute sum of squared distances

?

b
A

N i e

Geometric Error Metrics

Motivation
Promote accurate 3D shape preservation
Preserve screen-space silhouettes and pixel
coverage

Types
Vertex-Vertex Distance
Vertex-Plane Distance
Point-Surface Distance
Surface-Surface Distance

Vertex-Plane Distance

Store set of planes with each vertex
Error based on distance from vertex to planes
When vertices are merged, merge sets

Ronfard and Rossignac 96
Store plane sets, compute max distance

Error Quadrics — Garland and Heckbert 97
Store quadric form, compute sum of squared distances

Surface-Surface Distance

Compute or approximate maximum distance
between input and simplified surfaces
Tolerance Volumes - Guéziec 96
Simplification Envelopes - Cohen/Varshney 96
Hausdorff Distance - Klein 96

Mapping Distance - Bajaj/Schikore 96, Cohen et al. 97

Geometric Error Observations Mesh Simplification

Vertex-vertex and vertex-plane distance Advanced Considerations
Fast .
Low error in practice, but not guaranteed by metric Type of input mesh?

Surface-surface distance Modifies topology?
Required for guaranteed error bounds Continuous LOD?

Edge swap
—_—

vertex-vertex # surface-surface

Speed vs. quality?

View-Dependent Simplification Appearance Preserving

Simplify dynamically according to viewpoint
Visibility
Silhouettes

Lighting 488 tris

975 tris

1,951 tris

3,905 tris

7,809 tris

Caltech & Stanford Graphics Labs and Jonathan Cohen

Summary

Many mesh data structures
Compact storage vs ease, efficiency of use
How fast and easy are key operations

Mesh simplification
Reduce size of mesh in efficient quality-preserving way
Based on edge collapses mainly

Choose appropriate mesh data structure
Efficient to update, edge-collapses are local

Fairly modern ideas (last ~20 years)
Think about some of it yourself, see papers given out
We will cover simplification, quadric metrics next

