
1

Advanced Computer Graphics

CSE 163 [Spring 2018], Lecture 7

Ravi Ramamoorthi

http://www.cs.ucsd.edu/~ravir

To Do

§  Assignment 1, Due Apr 27
§  Any last minute issues or difficulties?

§  Starting Geometry Processing
§  Assignment 2 due May 18
§  This lecture starts discussing relevant content
§  Please START EARLY. Can do most after this week
§  Contact us for difficulties, help finding partners etc.

Motivation

§  A polygon mesh is a collection of triangles

§  We want to do operations on these triangles
§  E.g. walk across the mesh for simplification
§  Display for rendering
§  Computational geometry

§  Best representations (mesh data structures)?
§  Compactness
§  Generality
§  Simplicity for computations
§  Efficiency

Desirable Characteristics 1
§  Generality – from most general to least

§  Polygon soup
§  Only triangles
§  2-manifold: ≤ 2 triangles per edge
§  Orientable: consistent CW / CCW winding
§  Closed: no boundary

§  Compact storage

Mesh Data Structures

Mesh Data Structures

Desirable characteristics 2
§  Efficient support for operations:

§  Given face, find its vertices
§  Given vertex, find faces touching it
§  Given face, find neighboring faces
§  Given vertex, find neighboring vertices
§  Given edge, find vertices and faces it touches

§  These are adjacency operations important in mesh
simplification (homework), many other applications

Outline

§  Independent faces

§  Indexed face set

§  Adjacency lists

§  Winged-edge

§  Half-edge

Overview of mesh decimation and simplification

2

Independent Faces

Faces list vertex coordinates
§  Redundant vertices
§  No topology information

Face Table
F0: (x0,y0,z0), (x1,y1,z1), (x2,y2,z2)
F1: (x3,y3,z3), (x4,y4,z4), (x5,y5,z5)
F2: (x6,y6,z6), (x7,y7,z7), (x8,y8,z8)

F0

F1

F2

Indexed Face Set

§  Faces list vertex references – “shared vertices”

§  Commonly used (e.g. OFF file format itself)

§  Augmented versions simple for mesh processing

Vertex Table
v0: (x0,y0,z0)
v1: (x1,y1,z1)
v2: (x2,y2,z2)
v3: (x3,y3,z3)
v4: (x4,y4,z4)

Face Table
F0: 0, 1, 2
F1: 1, 4, 2
F2: 1, 3, 4

Note CCW ordering

F0

F1
F2

v0 v1 v3

v4 v2

Indexed Face Set

§  Storage efficiency?

§  Which operations supported in O(1) time?

Vertex Table
v0: (x0,y0,z0)
v1: (x1,y1,z1)
v2: (x2,y2,z2)
v3: (x3,y3,z3)
v4: (x4,y4,z4)

Face Table
F0: 0, 1, 2
F1: 1, 4, 2
F2: 1, 3, 4

Note CCW ordering

F0

F1
F2

v0 v1 v3

v4 v2

Efficient Algorithm Design

§  Can sometimes design algorithms to compensate
for operations not supported by data structures

§  Example: per-vertex normals
§  Average normal of faces touching each vertex
§  With indexed face set, vertex è face is O(n)
§  Naive algorithm for all vertices: O(n2)
§  Can you think of an O(n) algorithm?

Efficient Algorithm Design

§  Can sometimes design algorithms to compensate
for operations not supported by data structures

§  Example: per-vertex normals
§  Average normal of faces touching each vertex
§  With indexed face set, vertex è face is O(n)
§  Naive algorithm for all vertices: O(n2)
§  Can you think of an O(n) algorithm?

§  Useful to augment with vertex è face adjacency
§  For all vertices, find adjacent faces as well
§  Can be implemented while simply looping over faces

Outline

§  Independent faces

§  Indexed face set

§  Adjacency lists

§  Winged-edge

§  Half-edge

Overview of mesh decimation and simplification

3

Full Adjacency Lists

§  Store all vertex, face,
and edge adjacencies

F0

F1
F2

v0 v1 v3

v4 v2

e2

e0 e3

e4

e6

e1
e5

Edge Adjacency Table
e0: v0, v1; F0,ø; ø,e2,e1,ø
e1: v1,v2; F0,F1; e5,e0,e2,e6 …

Face Adjacency Table
F0: v0,v1,v2; F1,ø,ø; e0,e2,e1
F1: v1,v4,v2; ø,F0,F2; e6,e1,e5
F2: v1,v3,v4; ø,F1,ø; e4,e5,e3

Vertex Adjacency Table
v0: v1,v2; F0; e0,e2
v1: v3,v4,v2,v0; F2,F1,F0; e3,e5,e1,e0 …

Full adjacency: Issues

§  Garland and Heckbert claim they do this

§  Easy to find stuff

§  Issue is storage

§  And updating everything once you do something
like an edge collapse for mesh simplification

§  I recommend you implement something simpler
(like indexed face set plus vertex to face adjacency)

Partial Adjacency Lists

§  Store some adjacencies,
use to derive others

§  Many possibilities…

Edge Adjacency Table
e0: v0, v1; F0,ø; ø,e2,e1,ø
e1: v1,v2; F0,F1; e5,e0,e2,e6 …

Face Adjacency Table
F0: v0,v1,v2; F1,ø,ø; e0,e2,e1
F1: v1,v4,v2; ø,F0,F2; e6,e1,e5
F2: v1,v3,v4; ø,F1,ø; e4,e5,e3

Vertex Adjacency Table
v0: v1,v2; F0; e0,e2
v1: v3,v4,v2,v0; F2,F1,F0; e3,e5,e1,e0 …

F0

F1
F2

v0 v1 v3

v4 v2

e2

e0 e3

e4

e6

e1
e5

Partial Adjacency Lists

§  Some combinations only
make sense for closed
manifolds

Edge Adjacency Table
e0: v0, v1; F0,ø; ø,e2,e1,ø
e1: v1,v2; F0,F1; e5,e0,e2,e6 …

Face Adjacency Table
F0: v0,v1,v2; F1,ø,ø; e0,e2,e1
F1: v1,v4,v2; ø,F0,F2; e6,e1,e5
F2: v1,v3,v4; ø,F1,ø; e4,e5,e3

Vertex Adjacency Table
v0: v1,v2; F0; e0,e2
v1: v3,v4,v2,v0; F2,F1,F0; e3,e5,e1,e0 …

F0

F1
F2

v0 v1 v3

v4 v2

e2

e0 e3

e4

e6

e1
e5

Outline

§  Independent faces

§  Indexed face set

§  Adjacency lists

§  Winged-edge

§  Half-edge

Overview of mesh decimation and simplification

Winged, Half Edge Representations

§  Idea is to associate information with edges

§  Compact Storage

§  Many operations efficient

§  Allow one to walk around mesh

§  Usually general for arbitrary polygons (not triangles)

§  But implementations can be complex with special
cases relative to simple indexed face set++ or partial
adjacency table

4

Winged Edge

§  Most data stored at edges

§  Vertices, faces point to
one edge each

Edge Adjacency Table
e0: v0, v1; F0, ø; ø,e2,e1, ø
e1: v1,v2; F0,F1; e5,e0,e2,e6 …

Face Adjacency Table
F0: v0,v1,v2; F1, ø, ø; e0,e2,e1
F1: v1,v4,v2; ø,F0,F2; e6,e1,e5
F2: v1,v3,v4; ø,F1, ø; e4,e5,e3

Vertex Adjacency Table
v0: v1,v2; F0; e0,e2
v1: v3,v4,v2,v0; F2,F1,F0; e3,e5,e1,e0 …

F0

F1
F2

v0 v1 v3

v4 v2

e2

e0 e3

e4

e6

e1
e5

Winged Edge

§  Each edge stores 2
vertices, 2 faces, 4 edges –
fixed size

§  Enough information to
completely “walk around”
faces or vertices

§  Think how to implement
§  Walking around vertex
§  Finding neighborhood of face
§  Other ops for simplification

vbegin

vend

Fleft Fright

eforw,right eforw,left

eback,left eback,right

Half Edge

§  Instead of single edge,
2 directed “half edges”

§  Makes some operations
more efficient

§  Walk around face very
easily (each face need
only store one pointer)

vbegin

henext

Fleft heinv

HalfEdge Data Structure (example)
 class HalfEdge { // Only one example, some critical functions

 public:

 HalfEdgeIter next; // points to the next halfedge around the current face

 HalfEdgeIter flip; // points to the other halfedge associated with this edge

 VertexIter vertex; // points to the vertex at the "tail" of this halfedge

 EdgeIter edge; // points to the edge associated with this halfedge

 FaceIter face; // points to the face containing this halfedge

 bool onBoundary; // true if this halfedge is contained in a boundary

 // loop; false otherwise

 } ;

From Keenan Crane Geometry Processing code

https://github.com/dgpdec/course but write your own version

HalfEdge Walk Around Faces
 int Vertex :: valence(void) const { // returns the number of incident faces

 int n = 0;

 HalfEdgeCIter h = he; // Start loop with half-edge for that vertex

 do {

 n++; // Increment Valence. Other operations similarly

 // For area, A += h -> face -> area() ;

 h = h->flip->next; // Next Face. Why does this work?

 }

 while(h != he); // Stop when loop is complete. How does this work?

 return n;

 }

From Keenan Crane Geometry Processing code

https://github.com/dgpdec/course but write your own version

Outline

§  Independent faces

§  Indexed face set

§  Adjacency lists

§  Winged-edge

§  Half-edge

Overview of mesh decimation and simplification

5

Mesh Decimation

Triangles
: 41,855
27,970
20,922
12,939
8,385
4,766

Division, Viewpoint, Cohen

Mesh Decimation

§  Reduce number of polygons
§  Less storage
§  Faster rendering
§  Simpler manipulation

§  Desirable properties
§  Generality
§  Efficiency
§  Produces “good” approximation

Michelangelo’s St. Matthew
Original model: ~400M polygons

Primitive Operations

Simplify model a bit at a time by
removing a few faces
§  Repeated to simplify whole mesh

Types of operations
§  Vertex cluster
§  Vertex remove
§  Edge collapse (main operation used in assignment)

Vertex Cluster

§  Method
§  Merge vertices based on proximity
§  Triangles with repeated vertices can collapse to edges or points

§  Properties
§  General and robust
§  Can be unattractive if results in topology change

Vertex Remove

§  Method
§  Remove vertex and adjacent faces
§  Fill hole with new triangles (reduction of 2)

§  Properties
§  Requires manifold surface, preserves topology
§  Typically more attractive
§  Filling hole well not always easy

Edge Collapse

§  Method
§  Merge two edge vertices to one
§  Delete degenerate triangles

§  Properties
§  Special case of vertex cluster
§  Allows smooth transition
§  Can change topology

6

Mesh Decimation/Simplification

Typical: greedy algorithm
§  Measure error of possible “simple” operations

(primarily edge collapses)
§  Place operations in queue according to error
§  Perform operations in queue successively (depending

on how much you want to simplify model)
§  After each operation, re-evaluate error metrics

Geometric Error Metrics

§  Motivation
§  Promote accurate 3D shape preservation
§  Preserve screen-space silhouettes and pixel

coverage

§  Types
§  Vertex-Vertex Distance
§  Vertex-Plane Distance
§  Point-Surface Distance
§  Surface-Surface Distance

Vertex-Vertex Distance

§  E = max(|v3−v1|, |v3−v2|)

§  Appropriate during topology changes
§  Rossignac and Borrel 93
§  Luebke and Erikson 97

§  Loose for topology-preserving collapses

v1 v2

v3

Vertex-Plane Distance

§  Store set of planes with each vertex
§  Error based on distance from vertex to planes
§  When vertices are merged, merge sets

§  Ronfard and Rossignac 96
§  Store plane sets, compute max distance

§  Error Quadrics – Garland and Heckbert 97
§  Store quadric form, compute sum of squared distances

a b c

da

db

dc

Point-Surface Distance

§  For each original vertex,
find closest point on simplified surface

§  Compute sum of squared distances

Surface-Surface Distance

 Compute or approximate maximum distance
between input and simplified surfaces
§  Tolerance Volumes - Guéziec 96
§  Simplification Envelopes - Cohen/Varshney 96
§  Hausdorff Distance - Klein 96
§  Mapping Distance - Bajaj/Schikore 96, Cohen et al. 97

7

Geometric Error Observations

§  Vertex-vertex and vertex-plane distance
§  Fast
§  Low error in practice, but not guaranteed by metric

§  Surface-surface distance
§  Required for guaranteed error bounds

Edge swap

vertex-vertex ≠ surface-surface

Mesh Simplification

Advanced Considerations

§  Type of input mesh?

§  Modifies topology?

§  Continuous LOD?

§  Speed vs. quality?

View-Dependent Simplification

§  Simplify dynamically according to viewpoint
§  Visibility
§  Silhouettes
§  Lighting

Hoppe
7,809 tris

3,905 tris

1,951 tris

488 tris

975 tris

Appearance Preserving

Caltech & Stanford Graphics Labs and Jonathan Cohen

Summary

§  Many mesh data structures
§  Compact storage vs ease, efficiency of use
§  How fast and easy are key operations

§  Mesh simplification
§  Reduce size of mesh in efficient quality-preserving way
§  Based on edge collapses mainly

§  Choose appropriate mesh data structure
§  Efficient to update, edge-collapses are local

§  Fairly modern ideas (last ~20 years)
§  Think about some of it yourself, see papers given out
§  We will cover simplification, quadric metrics next

