

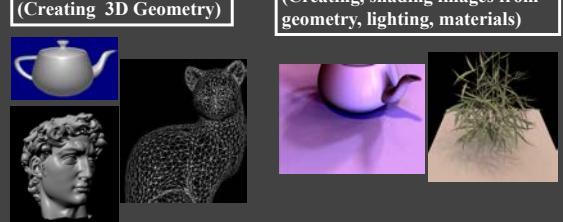
Advanced Computer Graphics

CSE 163 [Spring 2018], Lecture 6

Ravi Ramamoorthi

<http://www.cs.ucsd.edu/~ravir>

To Do


- Assignment 1, Due Apr 27
- Starting Geometry Processing
 - Assignment 2 due May 18
 - Please START EARLY
 - Contact us for difficulties, help finding partners etc.

Course Outline

- 3D Graphics Pipeline

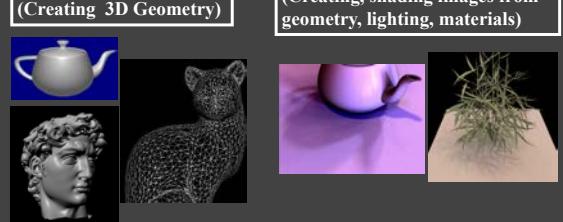
Modeling
(Creating 3D Geometry)

Rendering
(Creating, shading images from geometry, lighting, materials)

Course Outline

- 3D Graphics Pipeline

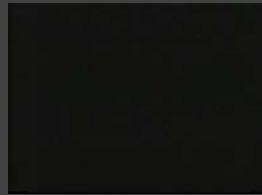
Modeling
(Creating 3D Geometry)


Rendering
(Creating, shading images from geometry, lighting, materials)

Unit 1: Foundations of Signal and Image Processing
Understanding the way 2D images are formed and displayed, the important concepts and algorithms, and to build an image processing utility like Photoshop
Weeks 1 – 3. [Assignment 1](#)

Unit 2: Meshes, Modeling
Weeks 3 – 5. [Assignment 2 May 18](#)

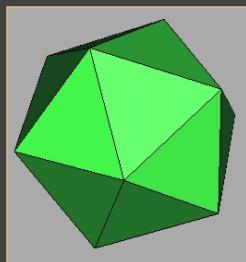
Modeling


- Spline curves, surfaces: 70s – 80s
- Utah teapot: Famous 3D model
- More recently: Triangle meshes often acquired from real objects

Relevance to Course

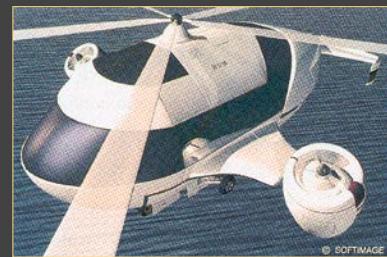
- Main idea is to talk about mesh processing alg.
- Will learn to represent, work with meshes
- Do mesh simplification, progressive meshes

Progressive Mesh Movie


Outline for Today

Overview of types of 3D representations

- 3D objects can be represented in a variety of ways. We survey these today
- Before talking specifically about polygon meshes, which are often most common way

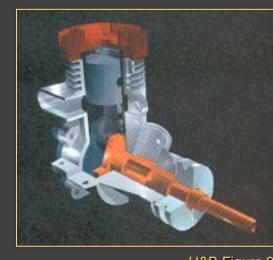

Much of material in this lecture courtesy Szymon Rusinkiewicz

3D Objects

How can this object be represented in a computer?

3D Objects

H&B Figure 10.46


This one?

3D Objects

How about this one?

3D Objects

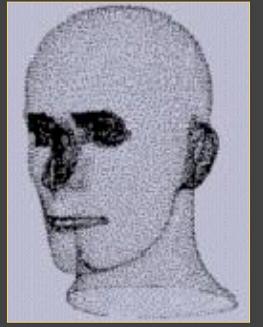
H&B Figure 9.9

This one?

Types of 3D object data

- Polygon meshes for complex real-world objects
- Spline patches from modeling programs
- Volume data or voxels (e.g. visible human project)
- Machine parts (Constructive Solid Geometry)
- And a few more

All have advantages, disadvantages. Increasingly, meshes are easiest to use and simplest


Comparisons

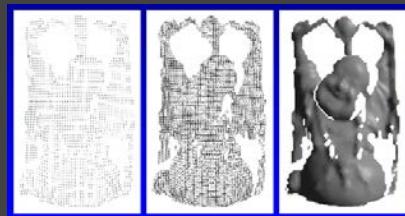
- Efficient hardware rendering (meshes simple)
- Manipulation (edit, simplify, compress etc.)
 - Splines easiest originally, but now many algorithms for polygon meshes
- Acquisition or Modeling
 - Splines, CSG originally used for modeling
 - But increasingly, complex meshes acquired from real world
- Compactness
- Simplicity (meshes win big here)

Point Cloud

- Unstructured samples
- Advantage: simplicity
- Disadvantage: no information on adjacency / connectivity
 - Have to use e.g. k-nearest neighbors

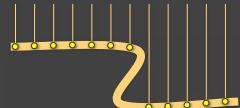
Increasingly hot topic in graphics today

Range Image

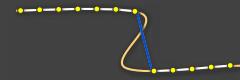

- Image: stores an intensity / color along each of a set of regularly-spaced rays in space
- Range image: stores a depth along each of a set of regularly-spaced rays in space
- Obtained using devices known as range scanners
- Advantages:
 - Uniform (?) parameterization
 - Adjacency / connectivity information

Cyberware whole body 3D scanner

Range Image


- Not a complete 3D description: does not include part of object occluded from viewpoint

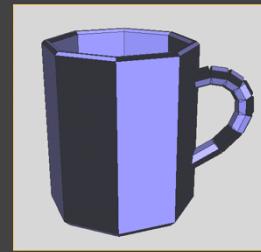
Range Image Tessellation Range Surface Curless


Range Image

- Adjacency in range image not equal to adjacency on surface

Range Image

- Adjacency in range image not equal to adjacency on surface

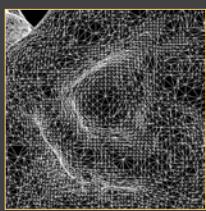

- Avoid connecting across these discontinuities
 - Heuristic: depth threshold

Range Image Terminology

- Range images
- Range surfaces
- Depth images
- Depth maps
- Height fields
- 2½-D images
- Surface profiles
- xyz maps
- ...

Polygon Soup

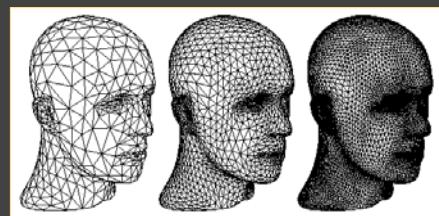
- Unstructured set of polygons:
 - Often the output of interactive modeling systems
 - Often sufficient for rendering, but not other operations



Larson

Mesh

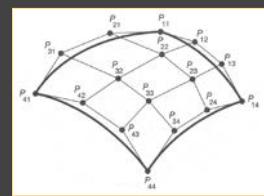
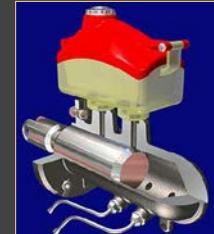
Connected set of polygons (usually triangles)


- May not be closed
- Representation (simplest): Vertices, Indexed Face Set
- Focus of your assignment and easy to work with

Curless

Subdivision Surface

- Coarse mesh + subdivision rule
 - Smooth surface is limit of refinements



Zorin & Schroder

Current Research

- All representations described are widely used, and topics of current research
- Range images, and combinations to construct entire surfaces widely used (3D photography, 3D objects in movies, ...)
- Triangle meshes perhaps most common
- Subdivision surfaces commonly used in movies, ...
- Point clouds becoming increasingly relevant
- Replace older representations in many cases (parametric, spline patches, CSG, etc.)

Parametric Surface

- Tensor product spline patches
 - Careful constraints to maintain continuity

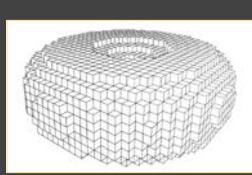
FvDFH

Implicit Surfaces

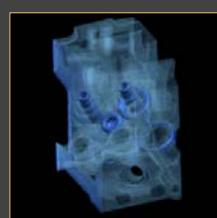
- Points satisfying: $F(x,y,z) = 0$

Polygonal Model

Implicit Model

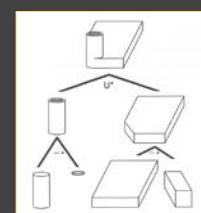

Lorensen

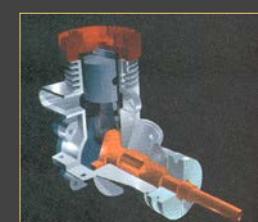
Why Implicit Surfaces?


- Function usually sampled regularly (voxel grid)
- + Can guarantee that model is hole-free
- + Easy to change topology
- Algorithms must traverse volume: slow
- More space than parametric representation

Voxels

- Uniform grid of occupancy, density, etc.
 - Often acquired from CAT, MRI, etc.


FvDFH Figure 12.20


Stanford Graphics Laboratory

Constructive Solid Geometry

- Hierarchy of boolean operations (union, difference, intersect) applied to simple shapes

FvDFH Figure 12.27

H&B Figure 9.9

Scene Graph

- Union of objects at leaf nodes

Bell Laboratories

avalon.viewpoint.com

Skeleton

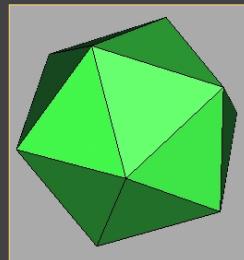
- Graph of curves with radii

Stanford Graphics Laboratory

SGI

Application-Specific Models

- Domain-specific semantic information + geometry



Apo A-1
(Theoretical Biophysics Group,
University of Illinois at Urbana-Champaign)

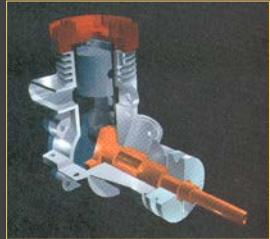
Architectural Floorplan
(CS Building, Princeton University)

3D Objects

How can this object be represented in a computer?

3D Objects

H&B Figure 10.46


This one?

3D Objects

How about this one?

3D Objects

H&B Figure 9.9

This one?

Outline for Today

Overview of types of 3D representations

- 3D objects can be represented in a variety of ways. We survey these today
- *Before talking specifically about polygon meshes, which are often most common way (next lecture)*