To Do

Advanced Computer Graphics Assignment 1, Due Apr 27.

Please START EARLY
CSE 163 [Spring 2018], Lecture 4 This lecture completes all the material you need

Ravi Ramamoorthi

http://www.cs.ucsd.edu/~ravir

wl &

Outline Discrete Convolution

. . . Previously: Convolution as mult in freq domain
Implementation of digital filters But need to convert digital image to and from to use that

Discrete convolution in spatial domain Useful in some cases, but not for small filters

Basic image-processing operations . : : .

Antialiased shift and resize Previously seen: Sinc as ideal low-pass filter
But has infinite spatial extent, exhibits spatial ringing
In general, use frequency ideas, but consider
implementation issues as well

Instead, use simple discrete convolution filters e.g.
Pixel gets sum of nearby pixels weighted by filter/mask

Implementing Discrete Convolution Outline

Fill in each pixel new image convolving with old Imol tati f diqital filt
Not really possible to implement it in place mplemen N 0, ',g' & '_ Cl)
awwidth biwidth Discrete convolution in spatial domain

Iab= > Y f(x-ay-b),(xy) Basic image-processing operations
Xx=a-width y=b-width UNT . .
More efficient for smallér kernelsffilters f Antialiased shift and resize
Normalization
If you don’ t want overall brightness change, entries of filter
must sum to 1. You may need to normalize by dividing

Integer arithmetic
Simpler and more efficient
In general, normalization outside, round to nearest int

Basic Image Processing (Assh 3.4)

Blur
Sharpen
Edge Detection

All implemented using convolution with different filters

‘i"

Blurring

Used for softening appearance

Convolve with gaussian filter
Same as mult. by gaussian in freq. domain, so
reduces high-frequency content
Greater the spatial width, smaller the Fourier width,
more blurring occurs and vice versa

How to find blurring filter?

Discrete Filtering, Normalization

Gaussian is infinite
In practice, finite filter of size n (much less energy beyond 2
sigma or 3 sigma).
Must renormalize so entries add up to 1

Simple practical approach
Take smallest values as 1 to scale others, round to integers
Normalize. E.g. for n = 3, sigma = %2

2 2
HOME ﬁexp[— u2;: }: %exp[—2(u2 + vz)}

0.012 0.09 0.012
~| 0.09 0.64 0.09
. 0.012 0.09 0.012

Sharpening Filter

Unlike blur, want to accentuate high frequencies

Take differences with nearby pixels (rather than avg)

-1

1
f(x,y)= 2 -2
-1

Blurring Filter
In general, for symmetry f(u,v) = f(u) f(v)
You might want to have some fun with asymmetric filters

We will use a Gaussian blur
Blur width sigma depends on kernel size n (3,5,7,11,13,19)

Spatial Frequency

~ 2
flu)= exp{ 4 } o =floor(n/2)/2

207

1
V2ro

Basic Image Processing

Blur
Sharpen
Edge Detection

All implemented using convolution with different filters

Basic Image Processing

Blur
Sharpen
Edge Detection

All implemented using convolution with different filters

Edge Detection

Complicated topic: subject of many PhD theses
Including newest work at UCSD, Marr Prize ICCV 15

Here, we present one approach (Sobel edge detector)

Step 1: Convolution with gradient (Sobel) filter
Edges occur where image gradients are large
Separately for horizontal and vertical directions

Step 2: Magnitude of gradient
Norm of horizontal and vertical gradients

Step 3: Thresholding
Threshold to detect edges

Edge Detection

Edge Detection

Outline

Implementation of digital filters
Discrete convolution in spatial domain
Basic image-processing operations
Antialiased shift and resize (Assn 3.5, brief)

Antialiased Scale Magnification

Magnify image (scale s or y> 1)
Interpolate between orig. samples to evaluate frac vals
Do so by convolving/resampling with kernel/filter:
Treat the two image dimensions independently (diff scales)

X
u=—
Y
xly+width

h(u'-u)l(u')

u'=x/y—width

Details

Step 1: Convolution with gradient (Sobel) filter
Edges occur where image gradients are large
Separately for horizontal and vertical directions

10 1 1 2 1
f.xy=| 2 0 2 | f (xy)=| 0 0 0
-1 0 1 B

Step 2: Magnitude of gradient
Norm of horizontal and vertical gradients

G=y|6[+,
Step 3: Thresholding

‘ v

Antialiased Shift

Shift image based on (fractional) s, and s,
Check for integers, treat separately
Otherwise convolve/resample with kernelffilter h:
In this part, no discrete kernel or mask; continuous

U= X—Sx v=y-s

I(x,y)=Y hu'-uv'-v)iu' V')

Antialiased Scale Minification

checkerboard.bmp 300x300: point sample checkerboard.bmp 300x300: Mitchell

Antialiased Scale Minification Bonus and Details: Image Warping

Minify (reduce size of) image
Similar in some ways to mipmapping for texture maps + Define transformation
We use fat pixels of size 1/y, with new size y*orig size o Describe the destination (xy) for every location (u,v)
(v is scale factor < 1). in the source (or vice-versa, if invertible)
Each fat pixel must integrate over corresponding
region in original image using the filter kernel.

u+width/y u+width/y

h(y(u'-u)i(u’)

u'=u-width/y u'=u-width/y

h(yu'-x)i(u’)

X
Slides courtesy Tom Funkhouser

A note on notation Example Mappings

This segment uses (u,v) for warped location in the « Scale by factor:
source image (or old coordinates) and (u', v') for o x =faclor* u
integer coordinates, and (x,y) for new coordinates o y = factor* v

Most of the homework assignment uses (x,y) for old
integer coordinates and (a,b) for new coordinates.
The warped location is not written explicitly, but is
implicit in the evaluation of the filter

Example Mappings Example Mappings

+ Rotate by © degrees:
o X = UucosO - vsin®
o y = usin® + vcos@

+ Any function of u and v:
o x=1(uyv) —_—
oy =fuv)

Fish-eye “Rain”

Forward Warping/Mapping

lterate over source, sending pixels to destination

» Forward mapping:
for (int u = 0; u < umax; u++) {
for (int v = 0; v < vmax; v++) {
float x = £ (u,v);
float y = £ (u,v);
dst(x,y) = src(u,v);

(u,v) f [

7 (xy)

Source image Destination image

Inverse Warping/Mapping

Iterate destination, finding pixels from source

+ Reverse mapping:
for (int x = 0; x < xmax; x++) {
for (int y = 0; y < ymax; y++) {
float u £ (x,y);
float v t,'*(x,y):
dst(x,y) = src(u,v):

(uv) f
ottt

—a

°(xy)

Source image Destination image

Filtering or Resampling

Compute weighted sum of pixel neighborhood
Weights are normalized values of kernel function
Equivalent to convolution at samples with kernel
Find good (normalized) filters h using earlier ideas

' <= utwidth; u' ++)
v' <= viwidth; v ' ++)
v)src(u',v');

Forward Warping: Problems
Iterate over source, sending pixels to destination
Same source pixel map to multiple dest pixels
Some dest pixels have no corresponding source

Holes in reconstruction
+ Forward mapping:
Must Splat etc. for (4nt u = 0: u < umax; ues) {
for (int v = 0: < vmax; vee) {
tloat x = £, (u,
float y = £,(u,
dat (x,y) = arc(u,v);

e

Lo
? (xy)

Sourceimage Destination image

Inverse Warping/Mapping

Iterate over dest, finding pixels from source
Non-integer evaluation source image, resample

May oversample source

+ Reverse mapping:

for (int x = 0; x < xmax; x++) {
for (int y = 0; y < ymax; y++) {

But no holes

Simpler, better than float u = £,°1(x,7):
' float v = £ 3(x,¥);
forward mapping , et = arotum,
}
(uv) f
0. —
o (xy)
Source image Destination image

Inverse Warping/Mapping

Iterate destination, finding pixels from source

* Reverse mapping:
for (int x = 0; x < xmax; x++) {
for (int y = 0; y < ymax; y++) {
float u = £ *(x,Y);
float v = £ -2 (x,y);
dst(x,y) = 'zesampleisrc(u,v,w):

V) f
Filter is really square ——+ o
with width w, not circle w “ho o)

Source image Destination image

Filters for Assignment

Implement 3 filters (for anti-aliased shift, resize)
Nearest neighbor or point sampling
Hat filter (linear or triangle)

HENIT

Mitchell cubic filter (form in assigments). This is a
good finite filter that approximates ideal sinc without
ringing or infinite width. Alternative is gaussian

Construct 2D filters by multiplying 1D filters
h(u,v) = h(u)h(v)

Filtering Methods Comparison

+ Trade-offs

o Aliasing versus blurring

= Computation speed

Bilinear

Gaussian

