Advanced Computer Graphics

CSE 163 [Spring 2018], Lecture 2

Ravi Ramamoorthi

http://www.cs.ucsd.edu/~ravir

wl &

Course Outline

3D Graphics Pipeline

Rendering

(Creating, shading images from

geometry, lighting, materials)

Unit 1: Foundations of Signal and Image Processing
Understanding the way 2D images are formed and displayed, the important
concepts and algorithms, and to build an image processing utility like Photoshop
Weeks 1 — 3. Assignment 1

Outline

Intensity and Color (briefly)
Basic operations (3.2 in assignment [10 points])

Quantization, Halftoning and Dithering
(3.3 in assignment [10 points])

Next week: Sampling and Reconstruction
Including signal processing and fourier analysis
Implementation of simple digital filters, resizing
Second half of assignment

Lectures main source; will also try handout

Course Outline

3D Graphics Pipeline

Rendering
(Creating, shading images from
geometry, lighting, materials)

To Do

Assignment 1, Due Apr 27.
Anyone need help finding partners?
Should already have downloaded code, skimmed assn
After today, enough to finish 3.2, 3.3 (first half)
Should START EARLY (this week) on assn
Second half next week.

Class participation, discussion important
If you have to miss a class, see podcast if available

Please sign up for Piazza

Intensities: Human Perception

Human eye can perceive wide range of intensities
Dimly lit darkened room to bright sunlight
Radiance ratio in these cases is a million to one or more

How does it work? [image only 256 gray levels]

Nonlinear human response ¢ — ;» p=233
Care about ratio of intensities (log scale). So jump from
0.1 to 0.11 as important as 0.50 to 0.55 (not .5 to .51)
E.g.: cycle through 50W,100W,150W (step from 50 to
100 much greater than from 100 to 150)

Technically, equispaced intensities multiplicative
0.02, 0.0203, 0.0206, ... 0.9848, 1.000 [for 100 values]

Area of CG known as tonemapping (we ignore)

Gamma Correction

Website: http://graphics.stanford.edu/gamma.html
Practical problem: Images look too dark/bright...

Example

Say RGB is something like (1, 0.5, 0)

Values of 1 and 0 don’ t change (black, white, primary
colors unaffected by gamma correction)

Value of .5 becomes .707 (power of /2, gamma = 2)

Final color is (1, 0.707, 0) [brighter, less saturated]

Color: Tristimulus Theory

Perception: Tri-stimulus theory
3 types of cones: basis for RGB
Cone response functions
Luminous efficiency (G>R>B)
Color matching: Note “negative colors”
CIE overview

Cone response L-uminous efficiency Color Matching Match w CIE primaries

Gamma Correction

Monitors were CRT displays with nonlinear resp.

\y
I[=aV’ V= (1] y=2.5+

[
NTSC, use 2.2 (camera
pre-corrected)

Rendering linear (physical
space) Gamma Correct

‘Watt Page 440

Color

Already seen: RGB model (color cube)

Today: A very brief overview of real story

Intuitive specify: Hue, Saturation, Lightness
Hexacone

Can convert HSV to RGB
Many other fancy, perceptual spaces

Basic Image Processing (HW 1: 3.2)

Brightness: Simply scale pixel RGB values
(1 leaves image intact, 0 makes it black)

Gamma Correction

Crop (integer coords) to focus on important aspects

Basic Image Processing (HW 1: 3.2)

Contrast [0 is constant grey image, 1 is original]
Find constant grey image by averaging
Interpolate between this and original

Outline

Intensity and Color (briefly)
Basic operations (3.2 in assignment [10 points]

Quantization, Halftoning and Dithering
(3.3 in assignment [10 points])

Next week: Sampling and Reconstruction
Including signal processing and fourier analysis
Implementation of simple digital filters, resizing
Second half of assignment

Sources of Error or Artifacts

Quantization: Not enough intensity resolution (bits)
Halftoning/dithering: Reduce visual artifacts due to
quantization

Spatial and Temporal Aliasing: not enough resolution
Sampling and reconstruction to reduce visual artifacts due

to aliasing (next week)

Basic Image Processing (HW 1: 3.2)

Saturation [0 is greyscale, 1 is original colors]
Interpolate between grayscale (but not const) and orig.
Negative values correspond to inverting hues [negative]

&

0.0

Images and Resolution

Image is a 2D rectilinear discrete array of samples

There are resolution issues:
Intensity resolution: Each pixel has only Depth bits
Spatial resolution: Image is only width*height pixels
Temporal resolution: Monitor refreshes only at some rate

Some material for slides courtesy Greg Humphreys and Tom Funkhouser

2 bits: NOTE CONTOURS

Uniform Quantization

2 bits: NOTE CONTOURS

Halftoning

Motivation: bilevel printing.
Trade off spatial resolution
for more intensity levels

Dots of appropriate size to
simulate grey levels

Area of dots proportional intensit '

Reducing Quantization

Halftoning

Dithering (distribute errors among pixels)
Random Dither
Error Diffusion (Floyd-Steinberg)

Reducing Quantization

Halftoning

Dithering
Random Dither
Error Diffusion (Floyd-Steinberg)

Halftone Patterns

Cluster of dots (pixels) to represent intensity (trading
spatial resolution for increased intensity resolution)

Exploits spatial integration in eye

Dithering

8 R

8 bits original 2 bits quantize: Note Contours

2 bits FLOYD STEINBERG 2 bits random dither: noise not contours

Random Dither Random Dither

Randomize quantization errors [see assignment for exact
details on adding random noise]

Seems silly (add random noise), but eye more tolerant of
high-frequency noise than contours or aliasing

More complex algorithms (not considered here) are e -

ordered dither with patterns of thresholds rather than 0"'9““' Rag(lom ()l'}’CFCd

completely random noise (8 bits) Dither Dither
(1 bit) (1 bit)

Image and example courtesy Tom Funkhouser

Error Diffusion Floyd Steinberg Results

Spread quantization error to neighboring pixels
to the right and below (later in the process)

Reduces net error, gives best results

Error =pixel(x, y)-quantize(x, y);

pixel(x+1y) -+ =a-Error; i

pixel(x -1,y +1)+=@-Error; Original Random Ordered Floyd-Steinberg
pixel(x,y +1) -+ =~ -Error; (8 bits) Dither Dither Dither
pixel(x +1,y + 1)+ =5 -Error; (1 bit) (1 bir) (1 hit)

Quantization (Sec 3.3 Ass 1

Simple quantization (should be straightforward)
Random Dither (just add noise, pretty simple)

Floyd-Steinberg (trickiest)
Must implement a diffusion of error to other pixels (simply
add in appropriate error to them)
Uses fractions, so must use floating point
And possibly negative numbers since error can be minus
Boundary conditions (what if no right etc.) toroidal [may
not be relevant in this case] or change weights
appropriately, but don’ t darken boundaries

