
1

Advanced Computer Graphics

CSE 163 [Spring 2018], Lecture 2

Ravi Ramamoorthi

http://www.cs.ucsd.edu/~ravir

Course Outline

§  3D Graphics Pipeline

 Rendering
(Creating, shading images from
geometry, lighting, materials)

 Modeling
(Creating 3D Geometry)

Course Outline

§  3D Graphics Pipeline

 Rendering
(Creating, shading images from
geometry, lighting, materials)

 Modeling
(Creating 3D Geometry)

Unit 1: Foundations of Signal and Image Processing
Understanding the way 2D images are formed and displayed, the important
concepts and algorithms, and to build an image processing utility like Photoshop
Weeks 1 – 3. Assignment 1

To Do

§  Assignment 1, Due Apr 27.
§  Anyone need help finding partners?
§  Should already have downloaded code, skimmed assn
§  After today, enough to finish 3.2, 3.3 (first half)
§  Should START EARLY (this week) on assn
§  Second half next week.

§  Class participation, discussion important
§  If you have to miss a class, see podcast if available

§  Please sign up for Piazza

Outline

§  Intensity and Color (briefly)
§  Basic operations (3.2 in assignment [10 points])

§  Quantization, Halftoning and Dithering
§  (3.3 in assignment [10 points])

§  Next week: Sampling and Reconstruction
§  Including signal processing and fourier analysis
§  Implementation of simple digital filters, resizing
§  Second half of assignment

§  Lectures main source; will also try handout

Intensities: Human Perception
§  Human eye can perceive wide range of intensities

§  Dimly lit darkened room to bright sunlight
§  Radiance ratio in these cases is a million to one or more

§  How does it work? [image only 256 gray levels]
§  Nonlinear human response

§  Care about ratio of intensities (log scale). So jump from
0.1 to 0.11 as important as 0.50 to 0.55 (not .5 to .51)

§  E.g.: cycle through 50W,100W,150W (step from 50 to
100 much greater than from 100 to 150)

§  Technically, equispaced intensities multiplicative
§  0.02, 0.0203, 0.0206, … 0.9848, 1.000 [for 100 values]

§  Area of CG known as tonemapping (we ignore)

 S = I p p ≈ .33

2

Gamma Correction
§  Website: http://graphics.stanford.edu/gamma.html
§  Practical problem: Images look too dark/bright…

Gamma Correction

§  Monitors were CRT displays with nonlinear resp.

§  NTSC, use 2.2 (camera
pre-corrected)

§  Rendering linear (physical
space) Gamma Correct

 I = aV γ

V = I

a
⎛
⎝⎜

⎞
⎠⎟

1/γ

γ=2.5+

Watt Page 440

Example
§  Say RGB is something like (1, 0.5, 0)

§  Values of 1 and 0 don’t change (black, white, primary
colors unaffected by gamma correction)

§  Value of .5 becomes .707 (power of ½, gamma = 2)

§  Final color is (1, 0.707, 0) [brighter, less saturated]

Color

§  Already seen: RGB model (color cube)

§  Today: A very brief overview of real story

§  Intuitive specify: Hue, Saturation, Lightness
§  Hexacone
§  Can convert HSV to RGB
§  Many other fancy, perceptual spaces

Color: Tristimulus Theory

§  Perception: Tri-stimulus theory
§  3 types of cones: basis for RGB
§  Cone response functions
§  Luminous efficiency (G>R>B)
§  Color matching: Note “negative colors”
§  CIE overview

Cone response Luminous efficiency Color Matching Match w CIE primaries

Basic Image Processing (HW 1: 3.2)

§  Brightness: Simply scale pixel RGB values
(1 leaves image intact, 0 makes it black)

§  Gamma Correction

§  Crop (integer coords) to focus on important aspects

0.1 0.4 0.7 1.0

3

Basic Image Processing (HW 1: 3.2)

§  Contrast [0 is constant grey image, 1 is original]
§  Find constant grey image by averaging
§  Interpolate between this and original

-0.5 0 0.5 1.0 2.0

Basic Image Processing (HW 1: 3.2)

§  Saturation [0 is greyscale, 1 is original colors]
§  Interpolate between grayscale (but not const) and orig.
§  Negative values correspond to inverting hues [negative]

-1.0 0.0 0.5 1.0 2.0

Outline

§  Intensity and Color (briefly)
§  Basic operations (3.2 in assignment [10 points]

§  Quantization, Halftoning and Dithering
§  (3.3 in assignment [10 points])

§  Next week: Sampling and Reconstruction
§  Including signal processing and fourier analysis
§  Implementation of simple digital filters, resizing
§  Second half of assignment

Images and Resolution
§  Image is a 2D rectilinear discrete array of samples

§  There are resolution issues:
§  Intensity resolution: Each pixel has only Depth bits
§  Spatial resolution: Image is only width*height pixels
§  Temporal resolution: Monitor refreshes only at some rate

NTSC 640x480 8 bits 30 Hz

PC 1280x1024 24 bits RGB 75 Hz

Film 3000x2000 12 bits 24 Hz

Laser Printer 7000x2000 1 (on or off)

Some material for slides courtesy Greg Humphreys and Tom Funkhouser

Sources of Error or Artifacts

§  Quantization: Not enough intensity resolution (bits)
 Halftoning/dithering: Reduce visual artifacts due to

quantization

§  Spatial and Temporal Aliasing: not enough resolution
 Sampling and reconstruction to reduce visual artifacts due

to aliasing (next week)

Uniform Quantization

1 bit

2 bits: NOTE CONTOURS

8 bits

4 bits

4

Uniform Quantization

2 bits: NOTE CONTOURS

Reducing Quantization

§  Halftoning

§  Dithering
§  Random Dither
§  Error Diffusion (Floyd-Steinberg)

Halftoning

§  Motivation: bilevel printing.
Trade off spatial resolution
for more intensity levels

§  Dots of appropriate size to
simulate grey levels

§  Area of dots proportional intensity

Halftone Patterns

§  Cluster of dots (pixels) to represent intensity (trading
spatial resolution for increased intensity resolution)

§  Exploits spatial integration in eye

Reducing Quantization

§  Halftoning

§  Dithering (distribute errors among pixels)
§  Random Dither
§  Error Diffusion (Floyd-Steinberg)

Dithering

8 bits original

2 bits FLOYD STEINBERG

2 bits quantize: Note Contours

2 bits random dither: noise not contours

5

Random Dither

§  Randomize quantization errors [see assignment for exact
details on adding random noise]

§  Seems silly (add random noise), but eye more tolerant of
high-frequency noise than contours or aliasing

§  More complex algorithms (not considered here) are
ordered dither with patterns of thresholds rather than
completely random noise

Random Dither

Image and example courtesy Tom Funkhouser

Error Diffusion

§  Spread quantization error to neighboring pixels
to the right and below (later in the process)

§  Reduces net error, gives best results

3/16 5/16 1/16

7/16

Error =pixel(x,y)-quantize(x,y);
pixel(x +1,y) + =α ⋅Error ;
pixel(x−1,y +1)+ =β ⋅Error ;
pixel(x,y +1) + =γ ⋅Error ;
pixel(x +1,y +1)+ =δ ⋅Error ;

Floyd Steinberg Results

Quantization (Sec 3.3 Ass 1)

§  Simple quantization (should be straightforward)

§  Random Dither (just add noise, pretty simple)

§  Floyd-Steinberg (trickiest)
§  Must implement a diffusion of error to other pixels (simply

add in appropriate error to them)
§  Uses fractions, so must use floating point
§  And possibly negative numbers since error can be minus
§  Boundary conditions (what if no right etc.) toroidal [may

not be relevant in this case] or change weights
appropriately, but don’t darken boundaries

